Multilevel Inverters

Download Multilevel Inverters PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multilevel Inverters book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Multilevel Inverters

Multilevel Inverters: Control Methods and Power Electronics Applications provides a suite of powerful control methods for conventional and emerging inverter topologies instrumentalized in power electronics applications. It introduces readers to the conventional pulse width modulation control of multilevel voltage source inverter topologies before moving through more advanced approaches including hysteresis control, proportional resonance control, and model predictive control. Later chapters survey the power electronics connection between device topologies and control methods, particularly focusing on conversion in renewable energy systems, electric vehicles, static VAR compensators and solid-state transformers. - Examines modern design configurations for multilevel inverter controllers, emerging control methods, and their applications - Presents detailed application examples of multilevel inverters deployed in modern and recent power electronic areas including renewable energy sources, electric vehicles, and grid management - Discusses deployment and development of future power converter implementation
Multilevel Inverters

Author: Krishna Kumar Gupta
language: en
Publisher: Academic Press
Release Date: 2017-12-05
Multilevel Inverters: Conventional and Emerging Topologies and Their Control is written with two primary objectives: (a) explanation of fundamentals of multilevel inverters (MLIs) with reference to the general philosophy of power electronics; and (b) enabling the reader to systematically analyze a given topology with the possibility of contributing towards the ongoing evolution of topologies. The authors also present an updated status of current research in the field of MLIs with an emphasis on the evolution of newer topologies. In addition, the work includes a universal control scheme, with which any given topology can be modulated. Extensive qualitative and quantitative evaluations of emerging topologies give researchers and industry professionals suitable solutions for specific applications with a systematic presentation of software-based modeling and simulation, and an exploration of key issues. Topics covered also include power distribution among sources, voltage balancing, optimization switching frequency and asymmetric source configuration. This valuable reference further provides tools to model and simulate conventional and emerging topologies using MATLAB®/Simulink® and discusses execution of experimental set-up using popular interfacing tools. The book includes a Foreword by Dr. Frede Blaabjerg, Fellow IEEE, Professor and VILLUM Investigator, Aalborg University, Denmark. - Includes a universal control scheme to help the reader learn the control of existing topologies and those which can be proposed in the future - Presents three new topologies. Systematic development of these topologies and subsequent simulation and experimental studies exemplify an approach to the development of newer topologies and verification of their working and experimental verification. - Contains a systematic and step-by-step approach to modelling and simulating various topologies designed to effectively employ low-power applications
Multilevel Inverters

Multilevel Inverters: Topologies, Control Methods, and Applications investigates modern device topologies, control methods, and application areas for the rapidly developing conversion technology. The device topologies section begins with conventional two-level inverter topologies to provide a background on the DC-AC power conversion process and required circuit configurations. Thereafter, multilevel topologies originating from neutral point clamped topologies are presented in detail. The improved and inherited regular multilevel topologies such as flying capacitor and conventional H-bridge topology are presented to illustrate the multilevel concept. Emerging topologies are introduced regarding application areas such as renewable energy sources, electric vehicles, and power systems. The book goes on to discuss fundamental operational principles of inverters using the conventional pulse width modulated control method. Current and voltage based closed loop control methods such as repetitive control, space vector modulation, proportional resonant control and other recent methods are developed. Core modern applications including wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, and static VAR compensators are investigated in depth. Multilevel Inverters for Emergent Topologies and Advanced Power Electronics Applications is a valuable resource for electrical engineering specialists, smart grid specialists, researchers on electrical, power systems, and electronics engineering, energy and computer engineers. - Reviews mathematical modeling and step-by-step simulation examples, straddling both basic and advanced topologies - Assesses how to systematically deploy and control multilevel power inverters in application scenarios - Reviews key applications across wind energy, photovoltaics, microgrids, hybrid microgrids, electric vehicles, active filters, static VAR compensators