Advancing The Characterization Of Neuronal Cyto Architecture By X Ray Phase Contrast Tomography


Download Advancing The Characterization Of Neuronal Cyto Architecture By X Ray Phase Contrast Tomography PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advancing The Characterization Of Neuronal Cyto Architecture By X Ray Phase Contrast Tomography book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Advancing the Characterization of Neuronal Cyto-Architecture by X-ray Phase-Contrast Tomography


Advancing the Characterization of Neuronal Cyto-Architecture by X-ray Phase-Contrast Tomography

Author: Marina Eckermann

language: en

Publisher: Universitätsverlag Göttingen

Release Date: 2021


DOWNLOAD





To bring physiology and pathology of the human brain into better micro-anatomical and histological context, studies with different methodologies are required. Established techniques such as electron microscopy or histology show limitations in view of invasiveness, labor-intense and artifact-prone sample preparation, as well as an adequate ratio between resolution and volume throughput. For this reason, X-ray phase-contrast tomography (PC-CT) has been proposed as a three-dimensional non-destructive imaging technique, which requires less effort in sample preparation and can assess larger volumes. Furthermore, it offers quantitative electron density based contrast even for unstained tissue. Up to now, however, PC-CT studies fell short in number of samples, so that structural alterations caused by neurodegenerative diseases cannot be distinguished from physiological inter-subject variations. In this thesis, the scalability of PC-CT with respect to the required number of samples and resolution-to-volume-throughput is demonstrated, and the methodology is advanced with respect to data acquisition, processing and segmentation. In addition to the human cerebellum, cortex and hippocampus are studied. Concerning quantification and analysis of PC-CT data, this work introduces optimal transport analysis to obtain quantitative metrics of the cyto-architecture and to identify changes due to neurodegenerative diseases. For the case of Alzheimer’s disease, this workflow reveals a yet undescribed compactification of granular cells in the human hippocampus. This thesis also provides optimized configurations to study neural tissues with laboratory instrumentation, and – finally – provides new correlative imaging approaches, in particular with scanning electron microscopy.

Advancing the Characterization of Neuronal Cyto-architecture by X-ray Phase-contrast Tomography


Advancing the Characterization of Neuronal Cyto-architecture by X-ray Phase-contrast Tomography

Author: Marina Eckermann

language: en

Publisher:

Release Date: 2021


DOWNLOAD





To bring physiology and pathology of the human brain into better micro-anatomical and histological context, studies with different methodologies are required. Established techniques such as electron microscopy or histology show limitations in view of invasiveness, labor-intense and artifact-prone sample preparation, as well as an adequate ratio between resolution and volume throughput. For this reason, X-ray phase-contrast tomography (PC-CT) has been proposed as a three-dimensional non-destructive imaging technique, which requires less effort in sample preparation and can assess larger volumes. Furthermore, it offers quantitative electron density based contrast even for unstained tissue. Up to now, however, PC-CT studies fell short in number of samples, so that structural alterations caused by neurodegenerative diseases cannot be distinguished from physiological inter-subject variations. In this thesis, the scalability of PC-CT with respect to the required number of samples and resolution-to-volume-throughput is demonstrated, and the methodology is advanced with respect to data acquisition, processing and segmentation. In addition to the human cerebellum, cortex and hippocampus are studied. Concerning quantification and analysis of PC-CT data, this work introduces optimal transport analysis to obtain quantitative metrics of the cyto-architecture and to identify changes due to neurodegenerative diseases. For the case of Alzheimer's disease, this workflow reveals a yet undescribed compactification of granular cells in the human hippocampus. This thesis also provides optimized configurations to study neural tissues with laboratory instrumentation, and - finally - provides new correlative imaging approaches, in particular with scanning electron microscopy.

3d virtual histology of neuronal tissue by propagation-based x-ray phase-contrast tomography


3d virtual histology of neuronal tissue by propagation-based x-ray phase-contrast tomography

Author: Mareike Töpperwien

language: en

Publisher: Göttingen University Press

Release Date: 2018


DOWNLOAD





Deciphering the three-dimensional (3d) cytoarchitecture of neuronal tissue is an important step towards understanding the connection between tissue function and structure and determining relevant changes in neurodegenerative diseases. The gold standard in pathology is histology, in which the tissue is examined under a light microscope after serial sectioning and subsequent staining. It is an invasive and labor-intensive technique which is prone to artifacts due to the slicing procedure. While it provides excellent results on the 2d slices, the 3d anatomy can only be determined after aligning the individual sections, leading to a non-isotropic resolution within the tissue. X-ray computed tomography (CT) offers a promising alternative due to its potential resolution and large penetration depth which allows for non-invasive imaging of the sample's 3d density distribution. In classical CT, contrast formation is based on absorption of the x-rays as they pass through the sample. However, weakly absorbing samples like soft tissue from the central nervous system give nearly no contrast. By exploiting the much stronger phase shifts for contrast formation, which the sample induces in a (partially) coherent wavefront, it can be substantially increased. During free-space propagation behind the sample, these phase shifts are converted to a measurable intensity image by interference of the disturbed wave fronts. In this thesis, 3d virtual histology is performed by means of propagation-based x-ray phase-contrast tomography on tissue from the central nervous system of humans and mice. A combination of synchrotron-based and laboratory setups is used to visualize the 3d density distribution on varying lengths scales from the whole organ down to single cells. By comparing and optimizing different preparation techniques and phase-retrieval approaches, even sub-cellular resolution can be reached in mm-sized tissue blocks. The development of an automatic cell segmentation workflow provides access to the 3d cellular distribution within the tissue, enabling the quantification of the cellular arrangement and allowing for extensive statistical analysis based on several thousands to millions of cells. This paves the way for biomedical studies aimed at changes in cellular distribution, e.g., in the course of neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease or ischemic stroke.