3d Virtual Histology Of Neuronal Tissue By Propagation Based X Ray Phase Contrast Tomography

Download 3d Virtual Histology Of Neuronal Tissue By Propagation Based X Ray Phase Contrast Tomography PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get 3d Virtual Histology Of Neuronal Tissue By Propagation Based X Ray Phase Contrast Tomography book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
3d virtual histology of neuronal tissue by propagation-based x-ray phase-contrast tomography

Author: Mareike Töpperwien
language: en
Publisher: Göttingen University Press
Release Date: 2018
Deciphering the three-dimensional (3d) cytoarchitecture of neuronal tissue is an important step towards understanding the connection between tissue function and structure and determining relevant changes in neurodegenerative diseases. The gold standard in pathology is histology, in which the tissue is examined under a light microscope after serial sectioning and subsequent staining. It is an invasive and labor-intensive technique which is prone to artifacts due to the slicing procedure. While it provides excellent results on the 2d slices, the 3d anatomy can only be determined after aligning the individual sections, leading to a non-isotropic resolution within the tissue. X-ray computed tomography (CT) offers a promising alternative due to its potential resolution and large penetration depth which allows for non-invasive imaging of the sample's 3d density distribution. In classical CT, contrast formation is based on absorption of the x-rays as they pass through the sample. However, weakly absorbing samples like soft tissue from the central nervous system give nearly no contrast. By exploiting the much stronger phase shifts for contrast formation, which the sample induces in a (partially) coherent wavefront, it can be substantially increased. During free-space propagation behind the sample, these phase shifts are converted to a measurable intensity image by interference of the disturbed wave fronts. In this thesis, 3d virtual histology is performed by means of propagation-based x-ray phase-contrast tomography on tissue from the central nervous system of humans and mice. A combination of synchrotron-based and laboratory setups is used to visualize the 3d density distribution on varying lengths scales from the whole organ down to single cells. By comparing and optimizing different preparation techniques and phase-retrieval approaches, even sub-cellular resolution can be reached in mm-sized tissue blocks. The development of an automatic cell segmentation workflow provides access to the 3d cellular distribution within the tissue, enabling the quantification of the cellular arrangement and allowing for extensive statistical analysis based on several thousands to millions of cells. This paves the way for biomedical studies aimed at changes in cellular distribution, e.g., in the course of neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease or ischemic stroke.
Multi-scale 3D Virtual Histology Via Phase-contrast X-ray Tomography with Synchrotron Radiation

Author: Jasper Frohn
language: en
Publisher: Universitätsverlag Göttingen
Release Date: 2023
To this day, the standard method for investigating biological tissue with cellular resolution is the examination under a light microscope, first denoted as histology by Karl Meyer in 1819. Despite the enormous success and importance of histology, it has two major disadvantages. Firstly, the specimen must be physically cut into thin sections due to the limited penetrating power of optical light, and secondly, additional staining of the specimen is required to achieve sufficient image contrast. Both disadvantages can be overcome by the non-destructive method of propagation-based X-ray phase-contrast tomography. While the mechanism of phase-contrast provides sufficient image contrast to image single cells, a tomographic imaging scheme with penetrating X-rays allows for an undamaged sample by virtually slicing the reconstructed 3D sample volume. In this work, the holotomography setup of the synchrotron endstation „GINIX“ (The Göttingen Instrument for Nanoscale-Imaging with X-Rays) was extended to a multi-scale X-ray phase-contrast tomography setup suitable for 3D virtual histology by adding two acquisition schemes. Compared to the existing setup, the first additional scheme is a propagation-based microtomography setup, which enlarges the reconstructed 3D volumes by a factor of approx. 64 at a fraction of the acquisition time (ca. 2 min). The second additional scheme aims for higher resolutions. To this end, the X-ray waveguide illumination was combined with photon counting detector with a large field of view and a novel phase reconstruction scheme, which is based on iterative farfield phase retrieval without an „empty-beam correction“ in the detector plane.
3d Virtual Histology of Neuronal Tissue by Propagation-based X-ray Phase-contrast Tomography

Deciphering the three-dimensional (3d) cytoarchitecture of neuronal tissue is an important step towards understanding the connection between tissue function and structure and determining relevant changes in neurodegenerative diseases. The gold standard in pathology is histology, in which the tissue is examined under a light microscope after serial sectioning and subsequent staining. It is an invasive and labor-intensive technique which is prone to artifacts due to the slicing procedure. While it provides excellent results on the 2d slices, the 3d anatomy can only be determined after alignin...