Adaptive Techniques For Dynamic Processor Optimization

Download Adaptive Techniques For Dynamic Processor Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Adaptive Techniques For Dynamic Processor Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Adaptive Techniques for Dynamic Processor Optimization

Author: Alice Wang
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-07-23
The integrated circuit has evolved tremendously in recent years as Moore’s Law has enabled exponentially more devices and functionality to be packed onto a single piece of silicon. In some ways however, these highly integrated circuits, of which microprocessors are the flagship example, have become victims of their own success. Despite dramatic reductions in the switching energy of the transistors, these reductions have kept pace neither with the increased integration levels nor with the higher switching frequencies. In addition, the atomic dimensions being utilized by these highly integrated processors have given rise to much higher levels of random and systematic variation which undercut the gains from process scaling that would otherwise be realized. So these factors—the increasing impact of variation and the struggle to control power consumption—have given rise to a tremendous amount of innovation in the area of adaptive techniques for dynamic processor optimization. The fundamental premise behind adaptive processor design is the recognition that variations in manufacturing and environment cause a statically configured operating point to be far too inefficient. Inefficient designs waste power and performance and will quickly be surpassed by more adaptive designs, just as it happens in the biological realm. Organisms must adapt to survive, and a similar trend is seen with processors – those that are enabled to adapt to their environment, will be far more competitive.
Innovative Research and Applications in Next-Generation High Performance Computing

High-performance computing (HPC) describes the use of connected computing units to perform complex tasks. It relies on parallelization techniques and algorithms to synchronize these disparate units in order to perform faster than a single processor could, alone. Used in industries from medicine and research to military and higher education, this method of computing allows for users to complete complex data-intensive tasks. This field has undergone many changes over the past decade, and will continue to grow in popularity in the coming years. Innovative Research Applications in Next-Generation High Performance Computing aims to address the future challenges, advances, and applications of HPC and related technologies. As the need for such processors increases, so does the importance of developing new ways to optimize the performance of these supercomputers. This timely publication provides comprehensive information for researchers, students in ICT, program developers, military and government organizations, and business professionals.
Wafer Level 3-D ICs Process Technology

Author: Chuan Seng Tan
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-06-29
This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.