Handbook Of Dynamic Data Driven Applications Systems

Download Handbook Of Dynamic Data Driven Applications Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Dynamic Data Driven Applications Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Handbook of Dynamic Data Driven Applications Systems

The Handbook of Dynamic Data Driven Applications Systems establishes an authoritative reference of DDDAS, pioneered by Dr. Darema and the co-authors for researchers and practitioners developing DDDAS technologies. Beginning with general concepts and history of the paradigm, the text provides 32 chapters by leading experts in10 application areas to enable an accurate understanding, analysis, and control of complex systems; be they natural, engineered, or societal: Earth and Space Data Assimilation Aircraft Systems Processing Structures Health Monitoring Biological Data Assessment Object and Activity Tracking Embedded Control and Coordination Energy-Aware Optimization Image and Video Computing Security and Policy Coding Systems Design The authors explain how DDDAS unifies the computational and instrumentation aspects of an application system, extends the notion of Smart Computing to span from the high-end to the real-time data acquisition and control, and manages Big Data exploitation with high-dimensional model coordination.
Handbook of Dynamic Data Driven Applications Systems

This handbook is an authoritative reference on the Dynamic Data Driven Applications Systems paradigm, pioneered by Dr. Darema, and contains DDDAS-based work conducted by contributing co-authors in numerous areas, to benefit science and technology researchers and practitioners developing DDDAS-based technologies. Beginning with general concepts and history of the DDDAS paradigm in the introductory chapter, this Third Volume in the series contains 33 chapters contributed by leading experts and is organized in nine thematic areas, spanning natural, engineered, or societal systems to enable an accurate understanding, analysis, and control of corresponding complex systems. The thematic areas cover fundamental and foundational methods; materials, structural, and energy systems; healthcare and situation awareness systems; air and space, communications, and cyber systems. The work presented shows how DDDAS unifies the computational and instrumentation aspects of an application system, extends computing notions to span from the high-end to the edge computing and real-time data acquisition and control, adaptively manages the operation of complex, distributed, multimodal systems through high-dimensional, systems-cognizant model-coordination and multi-objective optimization of resources and service delivery; supports methodologies for achieving autonomic and enhanced AI capabilities; DDDAS is foundational concept for Predictive Digital Twins and Dynamic Digital Twins. The authorsexplain how DDDAS unifies the computational and instrumentation aspects of an application system, extends the notion of Smart Computing to span from the high-end to the real-time data acquisition and control, and manages Big Data exploitation with high-dimensional model coordination.
Handbook of Dynamic Data Driven Applications Systems

The Handbook of Dynamic Data Driven Applications Systems establishes an authoritative reference of DDDAS, pioneered by Dr. Darema and the co-authors for researchers and practitioners developing DDDAS technologies. Beginning with general concepts and history of the paradigm, the text provides 32 chapters by leading experts in ten application areas to enable an accurate understanding, analysis, and control of complex systems; be they natural, engineered, or societal: The authors explain how DDDAS unifies the computational and instrumentation aspects of an application system, extends the notion of Smart Computing to span from the high-end to the real-time data acquisition and control, and manages Big Data exploitation with high-dimensional model coordination. The Dynamically Data Driven Applications Systems (DDDAS) paradigm inspired research regarding the prediction of severe storms. Specifically, the DDDAS concept allows atmospheric observing systems, computer forecast models, and cyberinfrastructure to dynamically configure themselves in optimal ways in direct response to current or anticipated weather conditions. In so doing, all resources are used in an optimal manner to maximize the quality and timeliness of information they provide. Kelvin Droegemeier, Regents’ Professor of Meteorology at the University of Oklahoma; former Director of the White House Office of Science and Technology Policy We may well be entering the golden age of data science, as society in general has come to appreciate the possibilities for organizational strategies that harness massive streams of data. The challenges and opportunities are even greater when the data or the underlying system are dynamic - and DDDAS is the time-tested paradigm for realizing this potential. Sangtae Kim, Distinguished Professor of Mechanical Engineering and Distinguished Professor of Chemical Engineering at Purdue University