Ada Learns To Count

Download Ada Learns To Count PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ada Learns To Count book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Ada Learns to Count

Author: David James Sheen
language: en
Publisher: Pelangi ePublishing Sdn Bhd
Release Date: 2012-12-01
This book is suitable for children age 4 to 7. “Ada Learns to Count” is a story about a little snake, Ada, learning to count. Ada is bored of counting. But when Bab comes along and teaches her to count the fun way, Ada finds that she actually like to count!
TEXT PROCESSING AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

In this book, we explored a code implementation for sentiment analysis using machine learning models, including XGBoost, LightGBM, and LSTM. The code aimed to build, train, and evaluate these models on Twitter data to classify sentiments. Throughout the project, we gained insights into the key steps involved and observed the findings and functionalities of the code. Sentiment analysis is a vital task in natural language processing, and the code was to give a comprehensive approach to tackle it. The implementation began by checking if pre-trained models for XGBoost and LightGBM existed. If available, the models were loaded; otherwise, new models were built and trained. This approach allowed for reusability of trained models, saving time and effort in subsequent runs. Similarly, the code checked if preprocessed data for LSTM existed. If not, it performed tokenization and padding on the text data, splitting it into train, test, and validation sets. The preprocessed data was saved for future use. The code also provided a function to build and train the LSTM model. It defined the model architecture using the Keras Sequential API, incorporating layers like embedding, convolutional, max pooling, bidirectional LSTM, dropout, and dense output. The model was compiled with appropriate loss and optimization functions. Training was carried out, with early stopping implemented to prevent overfitting. After training, the model summary was printed, and both the model and training history were saved for future reference. The train_lstm function ensured that the LSTM model was ready for prediction by checking the existence of preprocessed data and trained models. If necessary, it performed the required preprocessing and model building steps. The pred_lstm() function was responsible for loading the LSTM model and generating predictions for the test data. The function returned the predicted sentiment labels, allowing for further analysis and evaluation. To facilitate user interaction, the code included a functionality to choose the LSTM model for prediction. The choose_prediction_lstm() function was triggered when the user selected the LSTM option from a dropdown menu. It called the pred_lstm() function, performed evaluation tasks, and visualized the results. Confusion matrices and true vs. predicted value plots were generated to assess the model's performance. Additionally, the loss and accuracy history from training were plotted, providing insights into the model's learning process. In conclusion, this project provided a comprehensive overview of sentiment analysis using machine learning models. The code implementation showcased the steps involved in building, training, and evaluating models like XGBoost, LightGBM, and LSTM. It emphasized the importance of data preprocessing, model building, and evaluation in sentiment analysis tasks. The code also demonstrated functionalities for reusing pre-trained models and saving preprocessed data, enhancing efficiency and ease of use. Through visualization techniques, such as confusion matrices and accuracy/loss curves, the code enabled a better understanding of the model's performance and learning dynamics. Overall, this project highlighted the practical aspects of sentiment analysis and illustrated how different machine learning models can be employed to tackle this task effectively.
EMOTION PREDICTION FROM TEXT USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

This is a captivating book that delves into the intricacies of building a robust system for emotion detection in textual data. Throughout this immersive exploration, readers are introduced to the methodologies, challenges, and breakthroughs in accurately discerning the emotional context of text. The book begins by highlighting the importance of emotion detection in various domains such as social media analysis, customer sentiment evaluation, and psychological research. Understanding human emotions in text is shown to have a profound impact on decision-making processes and enhancing user experiences. Readers are then guided through the crucial stages of data preprocessing, where text is carefully cleaned, tokenized, and transformed into meaningful numerical representations using techniques like Count Vectorization, TF-IDF Vectorization, and Hashing Vectorization. Traditional machine learning models, including Logistic Regression, Random Forest, XGBoost, LightGBM, and Convolutional Neural Network (CNN), are explored to provide a foundation for understanding the strengths and limitations of conventional approaches. However, the focus of the book shifts towards the Long Short-Term Memory (LSTM) model, a powerful variant of recurrent neural networks. Leveraging word embeddings, the LSTM model adeptly captures semantic relationships and long-term dependencies present in text, showcasing its potential in emotion detection. The LSTM model's exceptional performance is revealed, achieving an astounding accuracy of 86% on the test dataset. Its ability to grasp intricate emotional nuances ingrained in textual data is demonstrated, highlighting its effectiveness in capturing the rich tapestry of human emotions. In addition to the LSTM model, the book also explores the Convolutional Neural Network (CNN) model, which exhibits promising results with an accuracy of 85% on the test dataset. The CNN model excels in capturing local patterns and relationships within the text, providing valuable insights into emotion detection. To enhance usability, an intuitive training and predictive interface is developed, enabling users to train their own models on custom datasets and obtain real-time predictions for emotion detection. This interactive interface empowers users with flexibility and accessibility in utilizing the trained models. The book further delves into the performance comparison between the LSTM model and traditional machine learning models, consistently showcasing the LSTM model's superiority in capturing complex emotional patterns and contextual cues within text data. Future research directions are explored, including the integration of pre-trained language models such as BERT and GPT, ensemble techniques for further improvements, and the impact of different word embeddings on emotion detection. Practical applications of the developed system and models are discussed, ranging from sentiment analysis and social media monitoring to customer feedback analysis and psychological research. Accurate emotion detection unlocks valuable insights, empowering decision-making processes and fostering meaningful connections. In conclusion, this project encapsulates a transformative expedition into understanding human emotions in text. By harnessing the power of machine learning techniques, the book unlocks the potential for accurate emotion detection, empowering industries to make data-driven decisions, foster connections, and enhance user experiences. This book serves as a beacon for researchers, practitioners, and enthusiasts venturing into the captivating world of emotion detection in text.