A Survey Of Trace Forms Of Algebraic Number Fields

Download A Survey Of Trace Forms Of Algebraic Number Fields PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Survey Of Trace Forms Of Algebraic Number Fields book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Survey of Trace Forms of Algebraic Number Fields

Every finite separable field extension F/K carries a canonical inner product, given by trace(xy). This symmetric K-bilinear form is the trace form of F/K.When F is an algebraic number field and K is the field Q of rational numbers, the trace form goes back at least 100 years to Hermite and Sylvester. These notes present the first systematic treatment of the trace form as an object in its own right. Chapter I discusses the trace form of F/Q up to Witt equivalence in the Witt ring W(Q). Special attention is paid to the Witt classes arising from normal extensions F/Q. Chapter II contains a detailed analysis of trace forms over p-adic fields. These local results are applied in Chapter III to prove that a Witt class X in W(Q) is represented by the trace form of an extension F/Q if and only if X has non-negative signature. Chapter IV discusses integral trace forms, obtained by restricting the trace form of F/Q to the ring of algebraic integers in F. When F/Q is normal, the Galois group acts as a group of isometries of the integral trace form. It is proved that when F/Q is normal of prime degree, the integral form is determined up to equivariant integral equivalence by the discriminant of F alone. Chapter V discusses the equivariant Witt theory of trace forms of normal extensions F/Q and Chapter VI relates the trace form of F/Q to questions of ramification in F. These notes were written in an effort to identify central problems. There are many open problems listed in the text. An introduction to Witt theory is included and illustrative examples are discussed throughout.
A Survey of Trace Forms of Algebraic Number Fields

Every finite separable field extension F/K carries a canonical inner product, given by trace(xy). This symmetric K-bilinear form is the trace form of F/K.When F is an algebraic number field and K is the field Q of rational numbers, the trace form goes back at least 100 years to Hermite and Sylvester. These notes present the first systematic treatment of the trace form as an object in its own right. Chapter I discusses the trace form of F/Q up to Witt equivalence in the Witt ring W(Q). Special attention is paid to the Witt classes arising from normal extensions F/Q. Chapter II contains a detailed analysis of trace forms over p-adic fields. These local results are applied in Chapter III to prove that a Witt class X in W(Q) is represented by the trace form of an extension F/Q if and only if X has non-negative signature. Chapter IV discusses integral trace forms, obtained by restricting the trace form of F/Q to the ring of algebraic integers in F. When F/Q is normal, the Galois group acts as a group of isometries of the integral trace form. It is proved that when F/Q is normal of prime degree, the integral form is determined up to equivariant integral equivalence by the discriminant of F alone. Chapter V discusses the equivariant Witt theory of trace forms of normal extensions F/Q and Chapter VI relates the trace form of F/Q to questions of ramification in F. These notes were written in an effort to identify central problems. There are many open problems listed in the text. An introduction to Witt theory is included and illustrative examples are discussed throughout.
A Century of Mathematics in America

Author: Peter L. Duren
language: en
Publisher: American Mathematical Soc.
Release Date: 1988
The first section of the book deals with some of the influential mathematics departments in the United States. Functioning as centers of research and training, these departments played a major role in shaping the mathematical life in this country. The second section deals with an extraordinary conference held at Princeton in 1946 to commemorate the university's bicentennial. The influence of women in American mathematics, the burgeoning of differential geometry in the last 50 years, and discussions of the work of von Karman and Weiner are among other topics covered.