A Graduate Introduction To Numerical Methods


Download A Graduate Introduction To Numerical Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Graduate Introduction To Numerical Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

A Graduate Introduction to Numerical Methods


A Graduate Introduction to Numerical Methods

Author: Robert M. Corless

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-12-12


DOWNLOAD





This book provides an extensive introduction to numerical computing from the viewpoint of backward error analysis. The intended audience includes students and researchers in science, engineering and mathematics. The approach taken is somewhat informal owing to the wide variety of backgrounds of the readers, but the central ideas of backward error and sensitivity (conditioning) are systematically emphasized. The book is divided into four parts: Part I provides the background preliminaries including floating-point arithmetic, polynomials and computer evaluation of functions; Part II covers numerical linear algebra; Part III covers interpolation, the FFT and quadrature; and Part IV covers numerical solutions of differential equations including initial-value problems, boundary-value problems, delay differential equations and a brief chapter on partial differential equations. The book contains detailed illustrations, chapter summaries and a variety of exercises as well some Matlab codes provided online as supplementary material. “I really like the focus on backward error analysis and condition. This is novel in a textbook and a practical approach that will bring welcome attention." Lawrence F. Shampine A Graduate Introduction to Numerical Methods and Backward Error Analysis” has been selected by Computing Reviews as a notable book in computing in 2013. Computing Reviews Best of 2013 list consists of book and article nominations from reviewers, CR category editors, the editors-in-chief of journals, and others in the computing community.

A Concise Introduction to Numerical Analysis


A Concise Introduction to Numerical Analysis

Author: A. C. Faul

language: en

Publisher: CRC Press

Release Date: 2016-03-23


DOWNLOAD





This textbook provides an accessible and concise introduction to numerical analysis for upper undergraduate and beginning graduate students from various backgrounds. It was developed from the lecture notes of four successful courses on numerical analysis taught within the MPhil of Scientific Computing at the University of Cambridge. The book is easily accessible, even to those with limited knowledge of mathematics. Students will get a concise, but thorough introduction to numerical analysis. In addition the algorithmic principles are emphasized to encourage a deeper understanding of why an algorithm is suitable, and sometimes unsuitable, for a particular problem. A Concise Introduction to Numerical Analysis strikes a balance between being mathematically comprehensive, but not overwhelming with mathematical detail. In some places where further detail was felt to be out of scope of the book, the reader is referred to further reading. The book uses MATLAB® implementations to demonstrate the workings of the method and thus MATLAB's own implementations are avoided, unless they are used as building blocks of an algorithm. In some cases the listings are printed in the book, but all are available online on the book’s page at www.crcpress.com. Most implementations are in the form of functions returning the outcome of the algorithm. Also, examples for the use of the functions are given. Exercises are included in line with the text where appropriate, and each chapter ends with a selection of revision exercises. Solutions to odd-numbered exercises are also provided on the book’s page at www.crcpress.com. This textbook is also an ideal resource for graduate students coming from other subjects who will use numerical techniques extensively in their graduate studies.

Introduction to Numerical Methods in Differential Equations


Introduction to Numerical Methods in Differential Equations

Author: Mark H. Holmes

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-04-05


DOWNLOAD





The title gives a reasonable ?rst-order approximation to what this book is about. To explain why, let’s start with the expression “di?erential equations.” These are essential in science and engineering, because the laws of nature t- ically result in equations relating spatial and temporal changes in one or more variables.Todevelopanunderstandingofwhatisinvolvedin?ndingsolutions, the book begins with problems involving derivatives for only one independent variable, and these give rise to ordinary di?erential equations. Speci?cally, the ?rst chapter considers initial value problems (time derivatives), and the second concentrates on boundary value problems (space derivatives). In the succeeding four chapters problems involving both time and space derivatives, partial di?erential equations, are investigated. This brings us to the next expression in the title: “numerical methods.” This is a book about how to transform differential equations into problems that can be solved using a computer.The fact is that computers are only able to solve discrete problems and generally do this using ?nite-precision arithmetic. What this means is that in deriving and then using a numerical algorithmthecorrectnessofthediscreteapproximationmustbeconsidered,as must the consequences of round-o? error in using ?oating-point arithmetic to calculatetheanswer.Oneoftheinterestingaspectsofthesubjectisthatwhat appears to be an obviously correct numerical method can result in complete failure. Consequently, although the book concentrates on the derivation and use of numerical methods, the theoretical underpinnings are also presented andusedinthedevelopment.