Yosida Approximations Of Stochastic Differential Equations In Infinite Dimensions And Applications


Download Yosida Approximations Of Stochastic Differential Equations In Infinite Dimensions And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Yosida Approximations Of Stochastic Differential Equations In Infinite Dimensions And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications


Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications

Author: T. E. Govindan

language: en

Publisher: Springer

Release Date: 2016-11-11


DOWNLOAD





This research monograph brings together, for the first time, the varied literature on Yosida approximations of stochastic differential equations (SDEs) in infinite dimensions and their applications into a single cohesive work. The author provides a clear and systematic introduction to the Yosida approximation method and justifies its power by presenting its applications in some practical topics such as stochastic stability and stochastic optimal control. The theory assimilated spans more than 35 years of mathematics, but is developed slowly and methodically in digestible pieces. The book begins with a motivational chapter that introduces the reader to several different models that play recurring roles throughout the book as the theory is unfolded, and invites readers from different disciplines to see immediately that the effort required to work through the theory that follows is worthwhile. From there, the author presents the necessary prerequisite material, and then launches the reader into the main discussion of the monograph, namely, Yosida approximations of SDEs, Yosida approximations of SDEs with Poisson jumps, and their applications. Most of the results considered in the main chapters appear for the first time in a book form, and contain illustrative examples on stochastic partial differential equations. The key steps are included in all proofs, especially the various estimates, which help the reader to get a true feel for the theory of Yosida approximations and their use. This work is intended for researchers and graduate students in mathematics specializing in probability theory and will appeal to numerical analysts, engineers, physicists and practitioners in finance who want to apply the theory of stochastic evolution equations. Since the approach is based mainly in semigroup theory, it is amenable to a wide audience including non-specialists in stochastic processes.

Trotter-Kato Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications


Trotter-Kato Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications

Author: T. E. Govindan

language: en

Publisher: Springer Nature

Release Date: 2024-07-01


DOWNLOAD





This is the first comprehensive book on Trotter-Kato approximations of stochastic differential equations (SDEs) in infinite dimensions and applications. This research monograph brings together the varied literature on this topic since 1985 when such a study was initiated. The author provides a clear and systematic introduction to the theory of Trotter-Kato approximations of SDEs and also presents its applications to practical topics such as stochastic stability and stochastic optimal control. The theory assimilated here is developed slowly and methodically in digestive pieces. The book begins with a motivational chapter introducing several different models that highlight the importance of the theory on abstract SDEs that will be considered in the subsequent chapters. The author next introduces the necessary mathematical background and then leads the reader into the main discussion of the monograph, namely, the Trotter-Kato approximations of many classes of SDEs in Hilbert spaces, Trotter-Kato approximations of SDEs in UMD Banach spaces and some of their applications. Most of the results presented in the main chapters appear for the first time in a book form. The monograph also contains many illustrative examples on stochastic partial differential equations and one in finance as an application of the Trotter-Kato formula. The key steps are included in all proofs which will help the reader to get a real insight into the theory of Trotter-Kato approximations and its use. This book is intended for researchers and graduate students in mathematics specializing in probability theory. It will also be useful to numerical analysts, engineers, physicists and practitioners who are interested in applying the theory of stochastic evolution equations. Since the approach is based mainly in semigroup theory, it is accessible to a wider audience including non-specialists in stochastic processes.