Yeh P Optical Waves In Layered Media 118 143 Wiley 1988


Download Yeh P Optical Waves In Layered Media 118 143 Wiley 1988 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Yeh P Optical Waves In Layered Media 118 143 Wiley 1988 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Wave Optics in Infrared Spectroscopy


Wave Optics in Infrared Spectroscopy

Author: Thomas G. Mayerhöfer

language: en

Publisher: Elsevier

Release Date: 2024-05-23


DOWNLOAD





Wave Optics in Infrared Spectroscopy starts where conventional books about infrared spectroscopy end. Whereas the latter are based on the Bouguer-Beer-Lambert law, the cornerstones of this book are wave optics and dispersion theory.This gap between both levels of theory is bridged to allow a seamless transition from one to the other. Based on these foundations, the reader is able to choose which level of theory is adequate for the particular problem at hand. Advanced topics like 2D correlation analysis, chemometrics and strong coupling are introduced and viewed from a wave optics perspective. Spectral mixing rules are also considered to better understand spectra of heterogeneous samples. Finally, optical anisotropy is examined to allow a better understanding of spectral features due to orientation and orientational averaging. This discussion is based on a 4 x 4 matrix formalism, which is used not only to simulate and analyze complex materials, but also to understand vibrational circular dichroism from a (semi-) classical point of view.Wave Optics in Infrared Spectroscopy is written as a tool to reunite the fragmented field of infrared spectroscopy. It will appeal to chemists, physicists, and chemical/optical engineers. - Assists the reader (including those with less physical science backgrounds) in using more of the extensive benefits that infrared spectroscopy can provide by making them better aware and informed about the higher-level theory - Foundations of the book are built on wave optics and dispersion theory versus the Bouguer-Beer-Lambert law of conventional infrared spectroscopy literature - Limits of lower level of theory are explained in detail - Provides a thorough introduction to more sophisticated topics with a smooth transition from lower to higher-level theory

Surface Science Techniques


Surface Science Techniques

Author: Gianangelo Bracco

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-01-11


DOWNLOAD





The book describes the experimental techniques employed to study surfaces and interfaces. The emphasis is on the experimental method. Therefore all chapters start with an introduction of the scientific problem, the theory necessary to understand how the technique works and how to understand the results. Descriptions of real experimental setups, experimental results at different systems are given to show both the strength and the limits of the technique. In a final part the new developments and possible extensions of the techniques are presented. The included techniques provide microscopic as well as macroscopic information. They cover most of the techniques used in surface science.

Photonic Crystals


Photonic Crystals

Author: John D. Joannopoulos

language: en

Publisher: Princeton University Press

Release Date: 2011-10-30


DOWNLOAD





Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetism. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on device design using temporal coupled-mode theory, discussions of diffraction and refraction at crystal interfaces, and more. Richly illustrated and accessibly written, Photonic Crystals is an indispensable resource for students and researchers. Extensively revised and expanded Features improved graphics throughout Includes new chapters on photonic-crystal fibers and combined index-and band-gap-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection, anomalous refraction and diffraction, computational photonics, and much more.