Yang Mills Existence And Mass Gap Problem

Download Yang Mills Existence And Mass Gap Problem PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Yang Mills Existence And Mass Gap Problem book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Millennium Prize Problems

Author: James Carlson
language: en
Publisher: American Mathematical Society, Clay Mathematics Institute
Release Date: 2023-09-14
On August 8, 1900, at the second International Congress of Mathematicians in Paris, David Hilbert delivered his famous lecture in which he described twenty-three problems that were to play an influential role in mathematical research. A century later, on May 24, 2000, at a meeting at the Collège de France, the Clay Mathematics Institute (CMI) announced the creation of a US$7 million prize fund for the solution of seven important classic problems which have resisted solution. The prize fund is divided equally among the seven problems. There is no time limit for their solution. The Millennium Prize Problems were selected by the founding Scientific Advisory Board of CMI—Alain Connes, Arthur Jaffe, Andrew Wiles, and Edward Witten—after consulting with other leading mathematicians. Their aim was somewhat different than that of Hilbert: not to define new challenges, but to record some of the most difficult issues with which mathematicians were struggling at the turn of the second millennium; to recognize achievement in mathematics of historical dimension; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; and to emphasize the importance of working towards a solution of the deepest, most difficult problems. The present volume sets forth the official description of each of the seven problems and the rules governing the prizes. It also contains an essay by Jeremy Gray on the history of prize problems in mathematics.
General Principles of Quantum Field Theory

Author: N.N. Bogolubov
language: en
Publisher: Springer Science & Business Media
Release Date: 1989-12-31
The majority of the "memorable" results of relativistic quantum theory were obtained within the framework of the local quantum field approach. The explanation of the basic principles of the local theory and its mathematical structure has left its mark on all modern activity in this area. Originally, the axiomatic approach arose from attempts to give a mathematical meaning to the quantum field theory of strong interactions (of Yukawa type). The fields in such a theory are realized by operators in Hilbert space with a positive Poincare-invariant scalar product. This "classical" part of the axiomatic approach attained its modern form as far back as the sixties. * It has retained its importance even to this day, in spite of the fact that nowadays the main prospects for the description of the electro-weak and strong interactions are in connection with the theory of gauge fields. In fact, from the point of view of the quark model, the theory of strong interactions of Wightman type was obtained by restricting attention to just the "physical" local operators (such as hadronic fields consisting of ''fundamental'' quark fields) acting in a Hilbert space of physical states. In principle, there are enough such "physical" fields for a description of hadronic physics, although this means that one must reject the traditional local Lagrangian formalism. (The connection is restored in the approximation of low-energy "phe nomenological" Lagrangians.
The Millennium Problems

In 2000, the Clay Foundation of Cambridge, Massachusetts, announced a historic competition: Whoever could solve any of seven extraordinarily difficult mathematical problems, and have the solution acknowledged as correct by the experts, would receive $1million in prize money. They encompass many of the most fascinating areas of pure and applied mathematics, from topology and number theory to particle physics, cryptography, computing and even aircraft design. Keith Devlin describes here what the seven problems are, how they came about, and what they mean for mathematics and science. In the hands of Devlin, each Millennium Problem becomes a fascinating window onto the deepest questions in the field.