Xgboost For Regression Predictive Modeling And Time Series Analysis

Download Xgboost For Regression Predictive Modeling And Time Series Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Xgboost For Regression Predictive Modeling And Time Series Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
XGBoost for Regression Predictive Modeling and Time Series Analysis

Author: Partha Pritam Deka
language: en
Publisher: Packt Publishing Ltd
Release Date: 2024-12-13
Master the art of predictive modeling with XGBoost and gain hands-on experience in building powerful regression, classification, and time series models using the XGBoost Python API Key Features Get up and running with this quick-start guide to building a classifier using XGBoost Get an easy-to-follow, in-depth explanation of the XGBoost technical paper Leverage XGBoost for time series forecasting by using moving average, frequency, and window methods Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionXGBoost offers a powerful solution for regression and time series analysis, enabling you to build accurate and efficient predictive models. In this book, the authors draw on their combined experience of 40+ years in the semiconductor industry to help you harness the full potential of XGBoost, from understanding its core concepts to implementing real-world applications. As you progress, you'll get to grips with the XGBoost algorithm, including its mathematical underpinnings and its advantages over other ensemble methods. You'll learn when to choose XGBoost over other predictive modeling techniques, and get hands-on guidance on implementing XGBoost using both the Python API and scikit-learn API. You'll also get to grips with essential techniques for time series data, including feature engineering, handling lag features, encoding techniques, and evaluating model performance. A unique aspect of this book is the chapter on model interpretability, where you'll use tools such as SHAP, LIME, ELI5, and Partial Dependence Plots (PDP) to understand your XGBoost models. Throughout the book, you’ll work through several hands-on exercises and real-world datasets. By the end of this book, you'll not only be building accurate models but will also be able to deploy and maintain them effectively, ensuring your solutions deliver real-world impact.What you will learn Build a strong, intuitive understanding of the XGBoost algorithm and its benefits Implement XGBoost using the Python API for practical applications Evaluate model performance using appropriate metrics Deploy XGBoost models into production environments Handle complex datasets and extract valuable insights Gain practical experience in feature engineering, feature selection, and categorical encoding Who this book is for This book is for data scientists, machine learning practitioners, analysts, and professionals interested in predictive modeling and time series analysis. Basic coding knowledge and familiarity with Python, GitHub, and other DevOps tools are required.
XGBoost for Regression Predictive Modeling and Time Series Analysis

XGBoost for Regression Predictive Modelling and Time Series Analysis will help you get a practical understanding of the XGBoost algorithm.
Hands-On Gradient Boosting with XGBoost and scikit-learn

Get to grips with building robust XGBoost models using Python and scikit-learn for deployment Key Features Get up and running with machine learning and understand how to boost models with XGBoost in no time Build real-world machine learning pipelines and fine-tune hyperparameters to achieve optimal results Discover tips and tricks and gain innovative insights from XGBoost Kaggle winners Book Description XGBoost is an industry-proven, open-source software library that provides a gradient boosting framework for scaling billions of data points quickly and efficiently. The book introduces machine learning and XGBoost in scikit-learn before building up to the theory behind gradient boosting. You'll cover decision trees and analyze bagging in the machine learning context, learning hyperparameters that extend to XGBoost along the way. You'll build gradient boosting models from scratch and extend gradient boosting to big data while recognizing speed limitations using timers. Details in XGBoost are explored with a focus on speed enhancements and deriving parameters mathematically. With the help of detailed case studies, you'll practice building and fine-tuning XGBoost classifiers and regressors using scikit-learn and the original Python API. You'll leverage XGBoost hyperparameters to improve scores, correct missing values, scale imbalanced datasets, and fine-tune alternative base learners. Finally, you'll apply advanced XGBoost techniques like building non-correlated ensembles, stacking models, and preparing models for industry deployment using sparse matrices, customized transformers, and pipelines. By the end of the book, you'll be able to build high-performing machine learning models using XGBoost with minimal errors and maximum speed. What you will learn Build gradient boosting models from scratch Develop XGBoost regressors and classifiers with accuracy and speed Analyze variance and bias in terms of fine-tuning XGBoost hyperparameters Automatically correct missing values and scale imbalanced data Apply alternative base learners like dart, linear models, and XGBoost random forests Customize transformers and pipelines to deploy XGBoost models Build non-correlated ensembles and stack XGBoost models to increase accuracy Who this book is for This book is for data science professionals and enthusiasts, data analysts, and developers who want to build fast and accurate machine learning models that scale with big data. Proficiency in Python, along with a basic understanding of linear algebra, will help you to get the most out of this book.