What Is Parallel And Distributed Computing

Download What Is Parallel And Distributed Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get What Is Parallel And Distributed Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Handbook on Parallel and Distributed Processing

Author: Jacek Blazewicz
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
In this volume authors of academia and practice provide practitioners, scientists and graduate students with a good overview of basic methods and paradigms, as well as important issues and trends across the broad spectrum of parallel and distributed processing. In particular, the book covers fundamental topics such as efficient parallel algorithms, languages for parallel processing, parallel operating systems, architecture of parallel and distributed systems, management of resources, tools for parallel computing, parallel database systems and multimedia object servers, and networking aspects of distributed and parallel computing. Three chapters are dedicated to applications: parallel and distributed scientific computing, high-performance computing in molecular sciences, and multimedia applications for parallel and distributed systems. Summing up, the Handbook is indispensable for academics and professionals who are interested in learning the leading expert`s view of the topic.
Patterns and Skeletons for Parallel and Distributed Computing

Author: Fethi Rabhi
language: en
Publisher: Springer Science & Business Media
Release Date: 2003
Patterns and Skeletons for Parallel and Distributed Computing is a unique survey of research work in high-level parallel and distributed computing over the past ten years. Comprising contributions from the leading researchers in Europe and the US, it looks at interaction patterns and their role in parallel and distributed processing, and demonstrates for the first time the link between skeletons and design patterns. It focuses on computation and communication structures that are beyond simple message-passing or remote procedure calling, and also on pragmatic approaches that lead to practical design and programming methodologies with their associated compilers and tools. The book is divided into two parts which cover: skeletons-related material such as expressing and composing skeletons, formal transformation, cost modelling and languages, compilers and run-time systems for skeleton-based programming.- design patterns and other related concepts, applied to other areas such as real-time, embedded and distributed systems. It will be an essential reference for researchers undertaking new projects in this area, and will also provide useful background reading for advanced undergraduate and postgraduate courses on parallel or distributed system design.
Ultimate Parallel and Distributed Computing with Julia For Data Science

Author: Nabanita Dash
language: en
Publisher: Orange Education Pvt Ltd
Release Date: 2024-01-03
Unleash Julia’s power: Code Your Data Stories, Shape Machine Intelligence! KEY FEATURES ● Comprehensive Learning Journey from fundamentals of Julia ML to advanced techniques. ● Immersive practical approach with real-world examples, exercises, and scenarios, ensuring immediate application of acquired knowledge. ● Delve into the unique features of Julia and unlock its true potential to excel in modern ML applications. DESCRIPTION This book takes you through a step-by-step learning journey, starting with the essentials of Julia's syntax, variables, and functions. You'll unlock the power of efficient data handling by leveraging Julia arrays and DataFrames.jl for insightful analysis. Develop expertise in both basic and advanced statistical models, providing a robust toolkit for deriving meaningful data-driven insights. The journey continues with machine learning proficiency, where you'll implement algorithms confidently using MLJ.jl and MLBase.jl, paving the way for advanced data-driven solutions. Explore the realm of Bayesian inference skills through practical applications using Turing.jl, enhancing your ability to extract valuable insights. The book also introduces crucial Julia packages such as Plots.jl for visualizing data and results. The handbook culminates in optimizing workflows with Julia's parallel and distributed computing capabilities, ensuring efficient and scalable data processing using Distributions.jl, Distributed.jl and SharedArrays.jl. This comprehensive guide equips you with the knowledge and practical insights needed to excel in the dynamic field of data science and machine learning. WHAT WILL YOU LEARN ● Master Julia ML Basics to gain a deep understanding of Julia's syntax, variables, and functions. ● Efficient Data Handling with Julia arrays and DataFrames for streamlined and insightful analysis. ● Develop expertise in both basic and advanced statistical models for informed decision-making through Statistical Modeling. ● Achieve Machine Learning Proficiency by confidently implementing ML algorithms using MLJ.jl and MLBase.jl. ● Apply Bayesian Inference Skills with Turing.jl for advanced modeling techniques. ● Optimize workflows using Julia's Parallel Processing Capabilities and Distributed Computing for efficient and scalable data processing. WHO IS THIS BOOK FOR? This book is designed to be a comprehensive and accessible companion for anyone eager to excel in machine learning and data analysis using Julia. Whether you are a novice or an experienced practitioner, the knowledge and skills imparted within these pages will empower you to navigate the complexities of modern data science with Julia. TABLE OF CONTENTS 1. Julia In Data Science Arena 2. Getting Started with Julia 3. Features Assisting Scaling ML Projects 4. Data Structures in Julia 5. Working With Datasets In Julia 6. Basics of Statistics 7. Probability Data Distributions 8. Framing Data in Julia 9. Working on Data in DataFrames 10. Visualizing Data in Julia 11. Introducing Machine Learning in Julia 12. Data and Models 13. Bayesian Statistics and Modeling 14. Parallel Computation in Julia 15. Distributed Computation in Julia Index