What Is Inductive Statistics


Download What Is Inductive Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get What Is Inductive Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Statistical and Inductive Inference by Minimum Message Length


Statistical and Inductive Inference by Minimum Message Length

Author: C.S. Wallace

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-05-26


DOWNLOAD





The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.

Estimation and Inferential Statistics


Estimation and Inferential Statistics

Author: Pradip Kumar Sahu

language: en

Publisher: Springer

Release Date: 2015-11-03


DOWNLOAD





This book focuses on the meaning of statistical inference and estimation. Statistical inference is concerned with the problems of estimation of population parameters and testing hypotheses. Primarily aimed at undergraduate and postgraduate students of statistics, the book is also useful to professionals and researchers in statistical, medical, social and other disciplines. It discusses current methodological techniques used in statistics and related interdisciplinary areas. Every concept is supported with relevant research examples to help readers to find the most suitable application. Statistical tools have been presented by using real-life examples, removing the “fear factor” usually associated with this complex subject. The book will help readers to discover diverse perspectives of statistical theory followed by relevant worked-out examples. Keeping in mind the needs of readers, as well as constantly changing scenarios, the material is presented in an easy-to-understand form.

Introduction to Probabilistic and Statistical Methods with Examples in R


Introduction to Probabilistic and Statistical Methods with Examples in R

Author: Katarzyna Stapor

language: en

Publisher: Springer Nature

Release Date: 2020-05-22


DOWNLOAD





This book strikes a healthy balance between theory and applications, ensuring that it doesn’t offer a set of tools with no mathematical roots. It is intended as a comprehensive and largely self-contained introduction to probability and statistics for university students from various faculties, with accompanying implementations of some rudimentary statistical techniques in the language R. The content is divided into three basic parts: the first includes elements of probability theory, the second introduces readers to the basics of descriptive and inferential statistics (estimation, hypothesis testing), and the third presents the elements of correlation and linear regression analysis. Thanks to examples showing how to approach real-world problems using statistics, readers will acquire stronger analytical thinking skills, which are essential for analysts and data scientists alike.