What Is Damping In Structural Dynamics

Download What Is Damping In Structural Dynamics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get What Is Damping In Structural Dynamics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Nonlinear Structural Dynamics and Damping

This book compiles recent research in the field of nonlinear dynamics, vibrations and damping applied to engineering structures. It addresses the modeling of nonlinear vibrations in beams, frames and complex mechanical systems, as well as the modeling of damping systems and viscoelastic materials applied to structural dynamics. The book includes several chapters related to solution techniques and signal analysis techniques. Last but not least, it deals with the identification of nonlinear responses applied to condition monitoring systems.
Fundamentals of Structural Dynamics

Author: Roy R. Craig, Jr.
language: en
Publisher: John Wiley & Sons
Release Date: 2011-08-24
FUNDAMENTALS OF STRUCTURAL DYNAMICS From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics. This edition updates Professor Craig’s classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element–based computational methods, and dynamic testing methods, this Second Edition includes new and expanded coverage of computational methods, as well as introductions to more advanced topics, including experimental modal analysis and “active structures.” With a systematic approach, it presents solution techniques that apply to various engineering disciplines. It discusses single degree-of-freedom (SDOF) systems, multiple degrees-of-freedom (MDOF) systems, and continuous systems in depth; and includes numeric evaluation of modes and frequency of MDOF systems; direct integration methods for dynamic response of SDOF systems and MDOF systems; and component mode synthesis. Numerous illustrative examples help engineers apply the techniques and methods to challenges they face in the real world. MATLAB® is extensively used throughout the book, and many of the .m-files are made available on the book’s Web site. Fundamentals of Structural Dynamics, Second Edition is an indispensable reference and “refresher course” for engineering professionals; and a textbook for seniors or graduate students in mechanical engineering, civil engineering, engineering mechanics, or aerospace engineering.
Dynamics and Control of Structures

Author: Wodek K. Gawronski
language: en
Publisher: Springer Science & Business Media
Release Date: 2004-07-14
Robots, aerospace structures, active earthquake-damping devices of tall buildings, and active sound suppression are examples of the application of structural dynamics and control methods. This book addresses the structural dynamics and control problems encountered by mechanical, civil, and control engineers. Many problems presented in this book originated in recent applications in the aerospace industry, and have been solved using the approach presented here. Dynamics analysis and controller design for flexible structures require a special approach due to the large size of structural models, and because flexible structure testing and control typically requires massive instrumentation (sensors and actuators). But the rapid development of new technologies and the increased power of computers allows for the formulation and solution of engineering problems that seemed to be unapproachable not so very long ago. The modal approach was chosen in this book. It has a long tradition in structural engineering (see, e.g., [84], [87], and [26]) and is also used in control system analysis, e.g., [93]. Its usefulness, thoroughly tested, does not need extensive justification. Both structural testing and analysis give priority to the modal representation, due to its compactness, simplicity, and explicit physical interpretation. Also, many useful structural properties are properly exposed only in modal coordinates. In this book the modal approach, preferred by structural engineers, is extended into control engineering, giving new analytical results, and narrowing the gap between structural and control analysis.