What Is Bayesian Analysis And Its Purpose

Download What Is Bayesian Analysis And Its Purpose PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get What Is Bayesian Analysis And Its Purpose book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Objective Bayesian Inference

Bayesian analysis is today understood to be an extremely powerful method of statistical analysis, as well an approach to statistics that is particularly transparent and intuitive. It is thus being extensively and increasingly utilized in virtually every area of science and society that involves analysis of data.A widespread misconception is that Bayesian analysis is a more subjective theory of statistical inference than what is now called classical statistics. This is true neither historically nor in practice. Indeed, objective Bayesian analysis dominated the statistical landscape from roughly 1780 to 1930, long before 'classical' statistics or subjective Bayesian analysis were developed. It has been a subject of intense interest to a multitude of statisticians, mathematicians, philosophers, and scientists. The book, while primarily focusing on the latest and most prominent objective Bayesian methodology, does present much of this fascinating history.The book is written for four different audiences. First, it provides an introduction to objective Bayesian inference for non-statisticians; no previous exposure to Bayesian analysis is needed. Second, the book provides an overview of the development and current state of objective Bayesian analysis and its relationship to other statistical approaches, for those with interest in the philosophy of learning from data. Third, the book presents a careful development of the particular objective Bayesian approach that we recommend, the reference prior approach. Finally, the book presents as much practical objective Bayesian methodology as possible for statisticians and scientists primarily interested in practical applications.
An Introduction to Bayesian Analysis

Author: Jayanta K. Ghosh
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-07-03
Though there are many recent additions to graduate-level introductory books on Bayesian analysis, none has quite our blend of theory, methods, and ap plications. We believe a beginning graduate student taking a Bayesian course or just trying to find out what it means to be a Bayesian ought to have some familiarity with all three aspects. More specialization can come later. Each of us has taught a course like this at Indian Statistical Institute or Purdue. In fact, at least partly, the book grew out of those courses. We would also like to refer to the review (Ghosh and Samanta (2002b)) that first made us think of writing a book. The book contains somewhat more material than can be covered in a single semester. We have done this intentionally, so that an instructor has some choice as to what to cover as well as which of the three aspects to emphasize. Such a choice is essential for the instructor. The topics include several results or methods that have not appeared in a graduate text before. In fact, the book can be used also as a second course in Bayesian analysis if the instructor supplies more details. Chapter 1 provides a quick review of classical statistical inference. Some knowledge of this is assumed when we compare different paradigms. Following this, an introduction to Bayesian inference is given in Chapter 2 emphasizing the need for the Bayesian approach to statistics.
Robust Bayesian Analysis

Author: David Rios Insua
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con cerns foundational aspects and describes decision-theoretical axiomatisa tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.