What Is A Financial Data Analyst

Download What Is A Financial Data Analyst PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get What Is A Financial Data Analyst book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Financial Data Analytics

Author: Sinem Derindere Köseoğlu
language: en
Publisher: Springer Nature
Release Date: 2022-04-25
This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics.
Financial Data Analytics with Machine Learning, Optimization and Statistics

An essential introduction to data analytics and Machine Learning techniques in the business sector In Financial Data Analytics with Machine Learning, Optimization and Statistics, a team consisting of a distinguished applied mathematician and statistician, experienced actuarial professionals and working data analysts delivers an expertly balanced combination of traditional financial statistics, effective machine learning tools, and mathematics. The book focuses on contemporary techniques used for data analytics in the financial sector and the insurance industry with an emphasis on mathematical understanding and statistical principles and connects them with common and practical financial problems. Each chapter is equipped with derivations and proofs—especially of key results—and includes several realistic examples which stem from common financial contexts. The computer algorithms in the book are implemented using Python and R, two of the most widely used programming languages for applied science and in academia and industry, so that readers can implement the relevant models and use the programs themselves. The book begins with a brief introduction to basic sampling theory and the fundamentals of simulation techniques, followed by a comparison between R and Python. It then discusses statistical diagnosis for financial security data and introduces some common tools in financial forensics such as Benford's Law, Zipf's Law, and anomaly detection. The statistical estimation and Expectation-Maximization (EM) & Majorization-Minimization (MM) algorithms are also covered. The book next focuses on univariate and multivariate dynamic volatility and correlation forecasting, and emphasis is placed on the celebrated Kelly's formula, followed by a brief introduction to quantitative risk management and dependence modelling for extremal events. A practical topic on numerical finance for traditional option pricing and Greek computations immediately follows as well as other important topics in financial data-driven aspects, such as Principal Component Analysis (PCA) and recommender systems with their applications, as well as advanced regression learners such as kernel regression and logistic regression, with discussions on model assessment methods such as simple Receiver Operating Characteristic (ROC) curves and Area Under Curve (AUC) for typical classification problems. The book then moves on to other commonly used machine learning tools like linear classifiers such as perceptrons and their generalization, the multilayered counterpart (MLP), Support Vector Machines (SVM), as well as Classification and Regression Trees (CART) and Random Forests. Subsequent chapters focus on linear Bayesian learning, including well-received credibility theory in actuarial science and functional kernel regression, and non-linear Bayesian learning, such as the Naïve Bayes classifier and the Comonotone-Independence Bayesian Classifier (CIBer) recently independently developed by the authors and used successfully in InsurTech. After an in-depth discussion on cluster analyses such as K-means clustering and its inversion, the K-nearest neighbor (KNN) method, the book concludes by introducing some useful deep neural networks for FinTech, like the potential use of the Long-Short Term Memory model (LSTM) for stock price prediction. This book can help readers become well-equipped with the following skills: To evaluate financial and insurance data quality, and use the distilled knowledge obtained from the data after applying data analytic tools to make timely financial decisions To apply effective data dimension reduction tools to enhance supervised learning To describe and select suitable data analytic tools as introduced above for a given dataset depending upon classification or regression prediction purpose The book covers the competencies tested by several professional examinations, such as the Predictive Analytics Exam offered by the Society of Actuaries, and the Institute and Faculty of Actuaries' Actuarial Statistics Exam. Besides being an indispensable resource for senior undergraduate and graduate students taking courses in financial engineering, statistics, quantitative finance, risk management, actuarial science, data science, and mathematics for AI, Financial Data Analytics with Machine Learning, Optimization and Statistics also belongs in the libraries of aspiring and practicing quantitative analysts working in commercial and investment banking.
Financial Data Analytics with R

Financial Data Analysis with R: Monte-Carlo Validation is a comprehensive exploration of statistical methodologies and their applications in finance. Readers are taken on a journey in each chapter through practical explanations and examples, enabling them to develop a solid foundation of these methods in R and their applications in finance. This book serves as an indispensable resource for finance professionals, analysts, and enthusiasts seeking to harness the power of data-driven decision-making. The book goes beyond just teaching statistical methods in R and incorporates a unique section of informative Monte-Carlo simulations. These Monte-Carlo simulations are uniquely designed to showcase the reader the potential consequences and misleading conclusions that can arise when fundamental model assumptions are violated. Through step-by-step tutorials and realworld cases, readers will learn how and why model assumptions are important to follow. With a focus on practicality, Financial Data Analysis with R: Monte-Carlo Validation equips readers with the skills to construct and validate financial models using R. The Monte-Carlo simulation exercises provide a unique opportunity to understand the methods further, making this book an essential tool for anyone involved in financial analysis, investment strategy, or risk management. Whether you are a seasoned professional or a newcomer to the world of financial analytics, this book serves as a guiding light, empowering you to navigate the landscape of finance with precision and confidence. Key Features: An extensive compilation of commonly used financial data analytics methods from fundamental to advanced levels Learn how to model and analyze financial data with step-by-step illustrations in R and ready-to-use publicly available data Includes Monte-Carlo simulations uniquely designed to showcase the reader the potential consequences and misleading conclusions that arise when fundamental model assumptions are violated Data and computer programs are available for readers to replicate and implement the models and methods themselves