Waves And Rays In Elastic Continua 3rd Edition


Download Waves And Rays In Elastic Continua 3rd Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Waves And Rays In Elastic Continua 3rd Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Waves And Rays In Elastic Continua (3rd Edition)


Waves And Rays In Elastic Continua (3rd Edition)

Author: Michael A Slawinski

language: en

Publisher: World Scientific Publishing Company

Release Date: 2014-12-15


DOWNLOAD





The present book — which is the third, significantly revised edition of the textbook originally published by Elsevier Science — emphasizes the interdependence of mathematical formulation and physical meaning in the description of seismic phenomena. Herein, we use aspects of continuum mechanics, wave theory and ray theory to explain phenomena resulting from the propagation of seismic waves.The book is divided into three main sections: Elastic Continua, Waves and Rays and Variational Formulation of Rays. There is also a fourth part, which consists of appendices.In Elastic Continua, we use continuum mechanics to describe the material through which seismic waves propagate, and to formulate a system of equations to study the behaviour of such a material. In Waves and Rays, we use these equations to identify the types of body waves propagating in elastic continua as well as to express their velocities and displacements in terms of the properties of these continua. To solve the equations of motion in anisotropic inhomogeneous continua, we invoke the concept of a ray. In Variational Formulation of Rays, we show that, in elastic continua, a ray is tantamount to a trajectory along which a seismic signal propagates in accordance with the variational principle of stationary traveltime. Consequently, many seismic problems in elastic continua can be conveniently formulated and solved using the calculus of variations. In the Appendices, we describe two mathematical concepts that are used in the book; namely, homogeneity of a function and Legendre's transformation. This section also contains a list of symbols.

Waves And Rays In Elastic Continua (Fourth Edition)


Waves And Rays In Elastic Continua (Fourth Edition)

Author: Michael A Slawinski

language: en

Publisher: World Scientific

Release Date: 2020-09-24


DOWNLOAD





Seismology, as a branch of mathematical physics, is an active subject of both research and development. Its reliance on computational and technological advances continuously motivates the developments of its underlying theory. The fourth edition of Waves and Rays in Elastic Continua responds to these needs.The book is both a research reference and a textbook. Its careful and explanatory style, which includes numerous exercises with detailed solutions, makes it an excellent textbook for the senior undergraduate and graduate courses, as well as for an independent study. Used in its entirety, the book could serve as a sole textbook for a year-long course in quantitative seismology. Its parts, however, are designed to be used independently for shorter courses with different emphases. The book is not limited to quantitive seismology; it can serve as a textbook for courses in mathematical physics or applied mathematics.

Waves and Rays in Elastic Continua


Waves and Rays in Elastic Continua

Author: Michael A. Slawinski

language: en

Publisher: World Scientific

Release Date: 2010


DOWNLOAD





This is the second edition of the textbook that was first published by Elsevier Science. Professor Slawinski has the copyright to the textbook and the second edition is significantly extended. The present book emphasizes the interdependence of mathematical formulation and physical meaning in the description of seismic phenomena. Herein, we use aspects of continuum mechanics, wave theory and ray theory to explain phenomena resulting from the propagation of seismic waves. The book is divided into three main sections: elastic continua, waves and rays and variational formulation of rays. There is also a fourth part, which consists of appendices. In Part 1, we use continuum mechanics to describe the material through which seismic waves propagate, and to formulate a system of equations to study the behaviour of such a material. In Part 2, we use these equations to identify the types of body waves propagating in elastic continua as well as to express their velocities and displacements in terms of the properties of these continua. To solve the equations of motion in anisotropic inhomogeneous continua, we use the high-frequency approximation and, hence, establish the concept of a ray. In Part 3, we show that, in elastic continua, a ray is tantamount to a trajectory along which a seismic signal propagates in accordance with the variational principle of stationary traveltime. Consequently, many seismic problems in elastic continua can be conveniently formulated and solved using the calculus of variations. In Part 4, we describe two mathematical concepts that are used in the book; namely, homogeneity of a function and Legendre's transformation. This section also contains a list of symbols.