Wavelets Made Easy

Download Wavelets Made Easy PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Wavelets Made Easy book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Wavelets Made Easy

Author: Yves Nievergelt
language: en
Publisher: Springer Science & Business Media
Release Date: 1999-04-28
This book explains the nature and computation of mathematical wavelets, which provide a framework and methods for the analysis and the synthesis of signals, images, and other arrays of data. The material presented here addresses the au dience of engineers, financiers, scientists, and students looking for explanations of wavelets at the undergraduate level. It requires only a working knowledge or memories of a first course in linear algebra and calculus. The first part of the book answers the following two questions: What are wavelets? Wavelets extend Fourier analysis. How are wavelets computed? Fast transforms compute them. To show the practical significance of wavelets, the book also provides transitions into several applications: analysis (detection of crashes, edges, or other events), compression (reduction of storage), smoothing (attenuation of noise), and syn thesis (reconstruction after compression or other modification). Such applications include one-dimensional signals (sounds or other time-series), two-dimensional arrays (pictures or maps), and three-dimensional data (spatial diffusion). The ap plications demonstrated here do not constitute recipes for real implementations, but aim only at clarifying and strengthening the understanding of the mathematics of wavelets.
Wavelets Made Easy

Author: Yves Nievergelt
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-27
This book explains the nature and computation of mathematical wavelets, which provide a framework and methods for the analysis and the synthesis of signals, images, and other arrays of data. The material presented here addresses the au dience of engineers, financiers, scientists, and students looking for explanations of wavelets at the undergraduate level. It requires only a working knowledge or memories of a first course in linear algebra and calculus. The first part of the book answers the following two questions: What are wavelets? Wavelets extend Fourier analysis. How are wavelets computed? Fast transforms compute them. To show the practical significance of wavelets, the book also provides transitions into several applications: analysis (detection of crashes, edges, or other events), compression (reduction of storage), smoothing (attenuation of noise), and syn thesis (reconstruction after compression or other modification). Such applications include one-dimensional signals (sounds or other time-series), two-dimensional arrays (pictures or maps), and three-dimensional data (spatial diffusion). The ap plications demonstrated here do not constitute recipes for real implementations, but aim only at clarifying and strengthening the understanding of the mathematics of wavelets.
An Introduction to Wavelet Analysis

Author: David F. Walnut
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-12-11
An Introduction to Wavelet Analysis provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and application of wavelet bases. The book develops the basic theory of wavelet bases and transforms without assuming any knowledge of Lebesgue integration or the theory of abstract Hilbert spaces. The book motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, and then shows how a more abstract approach allows us to generalize and improve upon the Haar series. Once these ideas have been established and explored, variations and extensions of Haar construction are presented. The mathematical pre-requisites for the book are a course in advanced calculus, familiarity with the language of formal mathematical proofs, and basic linear algebra concepts. Features: *Rigorous proofs with consistent assumptions on the mathematical background of the reader; does not assume familiarity with Hilbert spaces or Lebesgue measure * Complete background material on (Fourier Analysis topics) Fourier Analysis * Wavelets are presented first on the continuous domain and later restricted to the discrete domain, for improved motivation and understanding of discrete wavelet transforms and applications. * Special appendix, "Excursions in Wavelet Theory " provides a guide to current literature on the topic * Over 170 exercises guide the reader through the text. The book is an ideal text/reference for a broad audience of advanced students and researchers in applied mathematics, electrical engineering, computational science, and physical sciences. It is also suitable as a self-study reference guide for professionals. All readers will find