Wavelet Methods For Dynamical Problems

Download Wavelet Methods For Dynamical Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Wavelet Methods For Dynamical Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Wavelet Methods for Dynamical Problems

Employs a Step-by-Step Modular Approach to Structural ModelingConsidering that wavelet transforms have also proved useful in the solution and analysis of engineering mechanics problems, up to now there has been no sufficiently comprehensive text on this use. Wavelet Methods for Dynamical Problems: With Application to Metallic, Composite and Nano-co
Wavelets

Author: Jean-Michel Combes
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The last two subjects mentioned in the title "Wavelets, Time Frequency Methods and Phase Space" are so well established that they do not need any explanations. The first is related to them, but a short introduction is appropriate since the concept of wavelets emerged fairly recently. Roughly speaking, a wavelet decomposition is an expansion of an arbitrary function into smooth localized contributions labeled by a scale and a position pa rameter. Many of the ideas and techniques related to such expansions have existed for a long time and are widely used in mathematical analysis, theoretical physics and engineering. However, the rate of progress increased significantly when it was realized that these ideas could give rise to straightforward calculational methods applicable to different fields. The interdisciplinary structure (R.C.P. "Ondelettes") of the C.N.R.S. and help from the Societe Nationale Elf-Aquitaine greatly fostered these developments. The conference, the proceedings of which are contained in this volume, was held at the Centre National de Rencontres Mathematiques (C.N.R.M) in Marseille from December 14-18, 1987 and bought together an interdisciplinary mix of par ticipants. We hope that these proceedings will convey to the reader some of the excitement and flavor of the meeting.
Mathematical Methods in Dynamical Systems

The art of applying mathematics to real-world dynamical problems such as structural dynamics, fluid dynamics, wave dynamics, robot dynamics, etc. can be extremely challenging. Various aspects of mathematical modelling that may include deterministic or uncertain (fuzzy, interval, or stochastic) scenarios, along with integer or fractional order, are vital to understanding these dynamical systems. Mathematical Methods in Dynamical Systems offers problem-solving techniques and includes different analytical, semi-analytical, numerical, and machine intelligence methods for finding exact and/or approximate solutions of governing equations arising in dynamical systems. It provides a singular source of computationally efficient methods to investigate these systems and includes coverage of various industrial applications in a simple yet comprehensive way.