Waveguide Propagation Of Nonlinear Waves

Download Waveguide Propagation Of Nonlinear Waves PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Waveguide Propagation Of Nonlinear Waves book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Waveguide Propagation of Nonlinear Waves

This book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions. Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction.The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.
Waveguide Propagation of Nonlinear Waves

This book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions. Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction. The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.
Nonlinear Waves in Waveguides

Author: Sergei B. Leble
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-11
S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.