Wave Dynamics Mechanics And Physics Of Microstructured Metamaterials

Download Wave Dynamics Mechanics And Physics Of Microstructured Metamaterials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Wave Dynamics Mechanics And Physics Of Microstructured Metamaterials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials

This book addresses theoretical and experimental methods for exploring microstructured metamaterials, with a special focus on wave dynamics, mechanics, and related physical properties. The authors use various mathematical and physical approaches to examine the mechanical properties inherent to particular types of metamaterials. These include: • Boundary value problems in reduced strain gradient elasticity for composite fiber-reinforced metamaterials • Self-organization of molecules in ferroelectric thin films • Combined models for surface layers of nanostructures • Computer simulation at the micro- and nanoscale • Surface effects with anisotropic properties and imperfect temperature contacts • Inhomogeneous anisotropic metamaterials with uncoupled and coupled surfaces or interfaces • Special interface finite elements and other numerical and analytical methods for composite structures
Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials

This volume deals with topical problems concerning technology and design in construction of modern metamaterials. The authors construct the models of mechanical, electromechanical and acoustical behavior of the metamaterials, which are founded upon mechanisms existing on micro-level in interaction of elementary structures of the material. The empiric observations on the phenomenological level are used to test the created models. The book provides solutions, based on fundamental methods and models using the theory of wave propagation, nonlinear theories and composite mechanics for media with micro- and nanostructure. They include the models containing arrays of cracks, defects, with presence of micro- and nanosize piezoelectric elements and coupled physical-mechanical fields of different nature. The investigations show that the analytical, numerical and experimental methods permit evaluation of the qualitative and quantitative properties of the materials of this sort, with diagnosis of their effective characteristics, frequency intervals of effective energetic cutting and passing, as well as effective regimes of damage evaluation by the acoustic methods.
Physics and Mechanics of New Materials and Their Applications

This book presents 60 selected peer-reviewed contributions from the international conference Physics and Mechanics of New Materials and Their Applications, PHENMA 2023 (3-8 October, 2023, Surabaya, Indonesia), focusing on processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystal structures, materials, and composites with unique properties. It presents nanotechnological design approaches, environmental-friendly processing techniques, and physicochemical as well as mechanical studies of advanced materials. The selected contributions describe recent progress in energy harvesting and piezoelectric materials optimization, electromagnetoelastic actuators for nanotechnology research, impedance spectroscopy and study of ceramic materials, catalyst synthesis and control of morphological characteristics, synthesis and study of electrocatalysts for fuel cells. The presented results are important forongoing efforts concerning the theory, modelling, and testing of advanced materials. Other results are devoted to the analysis of technogenic raw materials and different material applications in science, technique and industry.