Visible Thinking In The K 8 Mathematics Classroom

Download Visible Thinking In The K 8 Mathematics Classroom PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Visible Thinking In The K 8 Mathematics Classroom book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Visible Thinking in the K–8 Mathematics Classroom

"This book is a crucial tool for meeting NCTM mathematical content and process standards. Through the useful problems and strategies presented within, teachers will definitely know how well their students will comprehend. If comprehension is an issue in your class, this book is a must have!" —Therese Gessler Rodammer, Math Coach Thomas W. Dixon Elementary School, Staunton, VA Seeing is believing with this interactive approach to math instruction Do you ever wish your students could read each other′s thoughts? Now they can—and so can you! Veteran mathematics educators Ted Hull, Don Balka, and Ruth Harbin Miles explain why making students′ thought processes visible is the key to effective mathematics instruction. Their newest book contains numerous grade-specific sample problems and instructional strategies for teaching essential concepts such as number sense, fractions, and estimation. Among the many benefits of visible thinking are: Interactive student-to-student learning Increased class participation Development of metacognitive thinking and problem-solving skills Helpful features include vignettes, relevant word problems, classroom scenarios, sample problems, lesson adaptations, and easy-to-follow examples of each strategy in action. The authors also explain how students can demonstrate their thinking using calculators and online tools. The final chapter outlines steps math leaders can take to implement visible thinking and maximize mathematics comprehension for all students.
Building Thinking Classrooms in Mathematics, Grades K-12

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
Visible Thinking in the K8 Mathematics Classroom

Seeing is believing with this interactive approach to math instruction Do you ever wish your students could read each other’s thoughts? Now they can—and so can you! This newest book by veteran mathematics educators provides instructional strategies for maximizing students’ mathematics comprehension by integrating visual thinking into the classroom. Included are numerous grade-specific sample problems for teaching essential concepts such as number sense, fractions, and estimation. Among the many benefits of visible thinking are: Interactive student-to-student learning Increased class participation Development of metacognitive thinking and problem-solving skills