Visibility Algorithms In Image Synthesis

Download Visibility Algorithms In Image Synthesis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Visibility Algorithms In Image Synthesis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Visibility Algorithms in the Plane

Author: Subir Kumar Ghosh
language: en
Publisher: Cambridge University Press
Release Date: 2007-03-29
A human observer can effortlessly identify visible portions of geometric objects present in the environment. However, computations of visible portions of objects from a viewpoint involving thousands of objects is a time consuming task even for high speed computers. To solve such visibility problems, efficient algorithms have been designed. This book presents some of these visibility algorithms in two dimensions. Specifically, basic algorithms for point visibility, weak visibility, shortest paths, visibility graphs, link paths and visibility queries are all discussed. Several geometric properties are also established through lemmas and theorems. With over 300 figures and hundreds of exercises, this book is ideal for graduate students and researchers in the field of computational geometry. It will also be useful as a reference for researchers working in algorithms, robotics, computer graphics and geometric graph theory, and some algorithms from the book can be used in a first course in computational geometry.
Radiosity and Realistic Image Synthesis

The goal of image synthesis is to create, using the computer, a visual experience that is identical to what a viewer would experience when viewing a real environment. Radiosity and Realistic Image Synthesis offers the first comprehensive look at the radiosity method for image synthesis and the tools required to approach this elusive goal. Basic concepts and mathematical fundamentals underlying image synthesis and radiosity algorithms are covered thoroughly. (A basic knowledge of undergraduate calculus is assumed). The algorithms that have been developed to implement the radiosity method ranging from environment subdivision to final display are discussed. Successes and difficulties in implementing and using these algorithms are highlighted. Extensions to the basic radiosity method to include glossy surfaces, fog or smoke, and realistic light sources are also described. There are 16 pages of full colour images and over 100 illustrations to explain the development and show the results of the radiosity method. Results of applications of this new technology from a variety of fields are also included. Michael Cohen has worked in the area of realistic image synthesis since 1983 and was instrumental in the development of the radiosity method. He is currently an assistant professor of computer science at Princeton University. John Wallace is a software engineer at 3D/EYE, Inc., where he is the project leader for the development of Hewlett-Packard's ATRCore radiosity and ray tracing library. A chapter on the basic concepts of image synthesis is contributed by Patrick Hanrahan. He has worked on the topic of image synthesis at Pixar, where he was instrumental in the development of the Renderman software. He has also led research on the hierarchical methods at Princeton University, where he is an associate professor of computer science. All three authors have written numerous articles on radiosity that have appeared in the SIGGAPH proceedings and elsewhere. They have also taught the SIGGRAPH course on radiosity for 5 years. - The first comprehensive book written about radiosity - Features applications from the fields of computer graphics, architecture, industrial design, and related computer aided design technologies - Offers over 100 illustrations and 16 pages of full-color images demonstrating the results of radiosity methods - Contains a chapter authored by Pat Hanrahan on the basic concepts of image synthesis and a foreword by Donald Greenberg