Virtual Machine Consolidation In Cloud Data Centres Using A Parameter Based Placement Strategy

Download Virtual Machine Consolidation In Cloud Data Centres Using A Parameter Based Placement Strategy PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Virtual Machine Consolidation In Cloud Data Centres Using A Parameter Based Placement Strategy book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Artificial Intelligence, Blockchain, Computing and Security Volume 1

This book contains the conference proceedings of ICABCS 2023, a non-profit conference with the objective to provide a platform that allows academicians, researchers, scholars and students from various institutions, universities and industries in India and abroad to exchange their research and innovative ideas in the field of Artificial Intelligence, Blockchain, Computing and Security. It explores the recent advancement in field of Artificial Intelligence, Blockchain, Communication and Security in this digital era for novice to profound knowledge about cutting edges in artificial intelligence, financial, secure transaction, monitoring, real time assistance and security for advanced stage learners/ researchers/ academicians. The key features of this book are: Broad knowledge and research trends in artificial intelligence and blockchain with security and their role in smart living assistance Depiction of system model and architecture for clear picture of AI in real life Discussion on the role of Artificial Intelligence and Blockchain in various real-life problems across sectors including banking, healthcare, navigation, communication, security Explanation of the challenges and opportunities in AI and Blockchain based healthcare, education, banking, and related industries This book will be of great interest to researchers, academicians, undergraduate students, postgraduate students, research scholars, industry professionals, technologists, and entrepreneurs.
EEVMC: An Energy Efficient Virtual Machine Consolidation Approach for Cloud Data Centers

The dynamic landscape of cloud computing design presents significant challenges regarding power consumption and quality of service (QoS). Virtual machine (VM) consolidation is essential for reducing power usage and enhancing QoS by relocating VMs between hosts. OpenStack Neat, a leading framework for VM consolidation, employs the Modified Best-Fit Decreasing (MBFD) VM placement technique, which faces issues related to energy consumption and QoS. To address these issues, we propose an Energy Efficient VM Consolidation (EEVMC) approach. Our method introduces a novel host selection criterion based on the incurred loss during VM placement to identify the most efficient host. For validation, we conducted simulations using real-time workload traces from Planet-Lab and Materna over ten days, leveraging the latest CloudSim toolkit to compare our approach with state-of-the-art techniques. For Planet-Lab’s workload, our EEVMC approach shows a reduction in energy consumption by 80.35%, 59.76%, 21.59%, and 7.40%, and fewer system-level agreement (SLA) violations by 94.51%, 94.85%, 47.17%, and 17.78% when compared to Modified Best-Fit Decreasing (MBFD), Power-Aware Best Fit Decreasing (PABFD), Medium Fit Power Efficient Decreasing (MFPED), and Power-Efficient Best-Fit Decreasing (PEBFD), respectively. Similarly, for Materna,EEVMCachieves a reduction in energy consumption by 16.10%, 61.0%, 4.94%, and 4.82%, and fewer SLA violations by 76.99%, 88.88%, 12.50%, and 48.65% against the same benchmarks. Additionally, Loss-Aware Performance Efficient Decreasing (LAPED) significantly reduces the total number of VM migrations and SLA time per active host, indicating a substantial improvement in cloud computing efficiency.