Vibrational Rotational Excitations In Nonlinear Molecular Systems

Download Vibrational Rotational Excitations In Nonlinear Molecular Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Vibrational Rotational Excitations In Nonlinear Molecular Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Vibrational-Rotational Excitations in Nonlinear Molecular Systems

Author: Alexander A. Ovchinnikov
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
"If there would be no God ~ then what a staff-captain am I?" ~ said one of the characters in a novel by Dostoevskii. In a similar way we can exclaim: "If there would be no nonlinearity ~ than what physics would that be'?". Really, the most interesting and exciting effects are described by non linear equations, and vanish in the linear approximation. For example, the general theory of relativity by A.Einstein comes to mind first - one of the most beautiful physical theories, which is in fact essentially nonlinear. Next, the phase transitions crystal ~ liquid and liquid ~ gas are due to the anhar monicity of inter-particle interactions, to dissociation and infinite motion. Similarly, transitions into the superconducting state or the superftuid would be impossible with purely harmonic interaction potentials. Another bril liant achievement in nonlinear physics was the construction of a laser and the subsequent development of nonlinear optics. The latter describes the in teraction of the matter with light of super-high intensity, when multi-quanta intra-molecular transitions become essential. Last, we should note here the very beautiful mathematical theory ~ the theory of catastrophes. Its subject is the study of invariant general properties of multi-dimensional surfaces in the vicinity of bifurcation points with respect to continuous transformations.
Molecular and Laser Spectroscopy

Author: Zu-Geng Wang
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The spectra of molecules containing more than one atom are necessarily of single atoms. They are correspondingly much more complex than those richer, not only in the number of spectral lines, but also in qualitatively different phenomena which do not have any counterpart in single atoms. Historically, molecular spectra have revealed much fundamental phy sics, such as the connection between nuclear spin statistics. They have pro vided models of physical systems which have been useful in quite different areas, such as particle physics. Most especially, molecular spectra are of fundamental importance in understanding chemical bonding. They reveal not only bond lengths but also the strength of the bonding potential between atoms. Moreover, these measurements are obtained for electronic excited states, as well as for the ground state, and for unstable short-lived molecules. In recent years, tunable lasers have provided powerful tools for the measurement and analysis of molecular spectra. Even before that, molecules were being used in lasers, most notably in the carbon dioxide laser, which finds many industrial applications.