Vibration Of Strongly Nonlinear Discontinuous Systems

Download Vibration Of Strongly Nonlinear Discontinuous Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Vibration Of Strongly Nonlinear Discontinuous Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Vibration of Strongly Nonlinear Discontinuous Systems

Author: V.I. Babitsky
language: en
Publisher: Springer Science & Business Media
Release Date: 2001-08-10
This monograph addresses the systematic representation of the methods of analysis developed by the authors as applied to such systems. Particular features of dynamic processes in such systems are studied. Special attention is given to an analysis of different resonant phenomena taking unusual and diverse forms.
Vibration of Strongly Nonlinear Discontinuous Systems

Author: V.I. Babitsky
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-11-02
Among the wide diversity of nonlinear mechanical systems, it is possible to distinguish a representative class of the systems which may be characterised by the presence of threshold nonlinear positional forces. Under particular configurations, such systems demonstrate a sudden change in the behaviour of elastic and dissipative forces. Mathematical study of such systems involves an analysis of equations of motion containing large-factored nonlinear terms which are associated with the above threshold nonlinearity. Due to this, we distinguish such discontinuous systems from the much wider class of essentially nonlinear systems, and define them as strongly nonlinear systems'. The vibration occurring in strongly nonlinear systems may be characterised by a sudden and abrupt change of the velocity at particular time instants. Such a vibration is said to be non-smooth. The systems most studied from this class are those with relaxation (Van Der Pol, Andronov, Vitt, Khaikhin, Teodorchik, etc. [5,65,70,71,98,171,181]), where the non-smooth vibration usually appears due to the presence of large nonconservative nonlinear forces. Equations of motion describing the vibration with relaxation may be written in such a manner that the highest derivative is accompanied by a small parameter. The methods of integration of these equations have been developed by Vasilieva and Butuzov [182], Volosov and Morgunov [190], Dorodnitsin [38], Zheleztsov [201], Mischenko and Rozov [115], Pontriagin [137], Tichonov [174,175], etc. In a system with threshold nonlinearity, the non-smooth vibration occurs due to the action of large conservative forces. This is distinct from a system with relaxation.
Non-Smooth Deterministic or Stochastic Discrete Dynamical Systems

This book contains theoretical and application-oriented methods to treat models of dynamical systems involving non-smooth nonlinearities. The theoretical approach that has been retained and underlined in this work is associated with differential inclusions of mainly finite dimensional dynamical systems and the introduction of maximal monotone operators (graphs) in order to describe models of impact or friction. The authors of this book master the mathematical, numerical and modeling tools in a particular way so that they can propose all aspects of the approach, in both a deterministic and stochastic context, in order to describe real stresses exerted on physical systems. Such tools are very powerful for providing reference numerical approximations of the models. Such an approach is still not very popular nevertheless, even though it could be very useful for many models of numerous fields (e.g. mechanics, vibrations, etc.). This book is especially suited for people both in research and industry interested in the modeling and numerical simulation of discrete mechanical systems with friction or impact phenomena occurring in the presence of classical (linear elastic) or non-classical constitutive laws (delay, memory effects, etc.). It aims to close the gap between highly specialized mathematical literature and engineering applications, as well as to also give tools in the framework of non-smooth stochastic differential systems: thus, applications involving stochastic excitations (earthquakes, road surfaces, wind models etc.) are considered. Contents 1. Some Simple Examples. 2. Theoretical Deterministic Context. 3. Stochastic Theoretical Context. 4. Riemannian Theoretical Context. 5. Systems with Friction. 6. Impact Systems. 7. Applications–Extensions. About the Authors Jérôme Bastien is Assistant Professor at the University Lyon 1 (Centre de recherche et d'Innovation sur le sport) in France. Frédéric Bernardin is a Research Engineer at Département Laboratoire de Clermont-Ferrand (DLCF), Centre d'Etudes Techniques de l'Equipement (CETE), Lyon, France. Claude-Henri Lamarque is Head of Laboratoire Géomatériaux et Génie Civil (LGCB) and Professor at Ecole des Travaux Publics de l'Etat (ENTPE), Vaulx-en-Velin, France.