Verification And Validation In Computational Fluid Dynamics

Download Verification And Validation In Computational Fluid Dynamics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Verification And Validation In Computational Fluid Dynamics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Verification and Validation in Scientific Computing

Author: William L. Oberkampf
language: en
Publisher: Cambridge University Press
Release Date: 2010-10-14
Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.
Verification and Validation in Computational Fluid Dynamics

Verification and validation (V and V) are the primary means to assess accuracy and reliability in computational simulations. This paper presents an extensive review of the literature in V and V in computational fluid dynamics (CFD), discusses methods and procedures for assessing V and V, and develops a number of extensions to existing ideas. The review of the development of V and V terminology and methodology points out the contributions from members of the operations research, statistics, and CFD communities. Fundamental issues in V and V are addressed, such as code verification versus solution verification, model validation versus solution validation, the distinction between error and uncertainty, conceptual sources of error and uncertainty, and the relationship between validation and prediction. The fundamental strategy of verification is the identification and quantification of errors in the computational model and its solution. In verification activities, the accuracy of a computational solution is primarily measured relative to two types of highly accurate solutions: analytical solutions and highly accurate numerical solutions. Methods for determining the accuracy of numerical solutions are presented and the importance of software testing during verification activities is emphasized.