Variants Of Random Walks

Download Variants Of Random Walks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Variants Of Random Walks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Variants of Random Walks

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Pages: 24. Chapters: Branching random walk, Brownian motion, Gambler's ruin, Heterogeneous random walk in one dimension, Loop-erased random walk, Ornstein-Uhlenbeck process, Reflected Brownian motion, Wiener process. Excerpt: A random walk is a mathematical formalization of a path that consists of a succession of random steps. For example, the path traced by a molecule as it travels in a liquid or a gas, the search path of a foraging animal, the price of a fluctuating stock and the financial status of a gambler can all be modeled as random walks, although they may not be truly random in reality. The term random walk was first introduced by Karl Pearson in 1905. Random walks have been used in many fields: ecology, economics, psychology, computer science, physics, chemistry, and biology. Random walks explain the observed behaviors of processes in these fields, and thus serve as a fundamental model for the recorded stochastic activity. Various different types of random walks are of interest. Often, random walks are assumed to be Markov chains or Markov processes, but other, more complicated walks are also of interest. Some random walks are on graphs, others on the line, in the plane, or in higher dimensions, while some random walks are on groups. Random walks also vary with regard to the time parameter. Often, the walk is in discrete time, and indexed by the natural numbers, as in . However, some walks take their steps at random times, and in that case the position is defined for the continuum of times . Specific cases or limits of random walks include the Levy flight. Random walks are related to the diffusion models and are a fundamental topic in discussions of Markov processes. Several properties of random walks, including dispersal distributions, first-passage times and encounter rates, have been extensively studied. A popular random...
Variational and Diffusion Problems in Random Walk Spaces

This book presents the latest developments in the theory of gradient flows in random walk spaces. A broad framework is established for a wide variety of partial differential equations on nonlocal models and weighted graphs. Within this framework, specific gradient flows that are studied include the heat flow, the total variational flow, and evolution problems of Leray-Lions type with different types of boundary conditions. With many timely applications, this book will serve as an invaluable addition to the literature in this active area of research. Variational and Diffusion Problems in Random Walk Spaces will be of interest to researchers at the interface between analysis, geometry, and probability, as well as to graduate students interested in exploring these areas.
Stochastic Calculus for Finance II

Author: Steven E. Shreve
language: en
Publisher: Springer Science & Business Media
Release Date: 2004-06-03
"A wonderful display of the use of mathematical probability to derive a large set of results from a small set of assumptions. In summary, this is a well-written text that treats the key classical models of finance through an applied probability approach....It should serve as an excellent introduction for anyone studying the mathematics of the classical theory of finance." --SIAM