Variable Lebesgue Spaces And Hyperbolic Systems

Download Variable Lebesgue Spaces And Hyperbolic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Variable Lebesgue Spaces And Hyperbolic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Variable Lebesgue Spaces and Hyperbolic Systems

This book targets graduate students and researchers who want to learn about Lebesgue spaces and solutions to hyperbolic equations. It is divided into two parts. Part 1 provides an introduction to the theory of variable Lebesgue spaces: Banach function spaces like the classical Lebesgue spaces but with the constant exponent replaced by an exponent function. These spaces arise naturally from the study of partial differential equations and variational integrals with non-standard growth conditions. They have applications to electrorheological fluids in physics and to image reconstruction. After an introduction that sketches history and motivation, the authors develop the function space properties of variable Lebesgue spaces; proofs are modeled on the classical theory. Subsequently, the Hardy-Littlewood maximal operator is discussed. In the last chapter, other operators from harmonic analysis are considered, such as convolution operators and singular integrals. The text is mostly self-contained, with only some more technical proofs and background material omitted. Part 2 gives an overview of the asymptotic properties of solutions to hyperbolic equations and systems with time-dependent coefficients. First, an overview of known results is given for general scalar hyperbolic equations of higher order with constant coefficients. Then strongly hyperbolic systems with time-dependent coefficients are considered. A feature of the described approach is that oscillations in coefficients are allowed. Propagators for the Cauchy problems are constructed as oscillatory integrals by working in appropriate time-frequency symbol classes. A number of examples is considered and the sharpness of results is discussed. An exemplary treatment of dissipative terms shows how effective lower order terms can change asymptotic properties and thus complements the exposition.
Regularity Theory for Generalized Navier–Stokes Equations

Author: Cholmin Sin
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2025-03-17
This book delves into the recent findings and research methods in the existence and regularity theory for Non-Newtonian Fluids with Variable Power-Law. The aim of this book is not only to introduce recent results and research methods in the existence and regularity theory, such as higher integrability, higher differentiability, and Holder continuity for flows of non-Newtonian fluids with variable power-laws, but also to summarize much of the existing literature concerning these topics. While this book mainly focuses on steady-state flows of non-Newtonian fluids, the methods and ideas presented in this book can be applied to unsteady flows (as discussed in Chapter 7) and other related problems such as complex non-Newtonian fluids, plasticity, elasticity, p(x)-Laplacian type systems, and so on. The book is intended for researchers and graduate students in the field of mathematical fluid mechanics and partial differential equations with variable exponents. It is expected to contribute to the advancement of mathematics and its applications.
Arithmetic Geometry over Global Function Fields

This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings.