Using R For Numerical Analysis In Science And Engineering

Download Using R For Numerical Analysis In Science And Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Using R For Numerical Analysis In Science And Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Using R for Numerical Analysis in Science and Engineering

Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.
Numerical Analysis Using R

Author: Graham W. Griffiths
language: en
Publisher: Cambridge University Press
Release Date: 2016-04-26
This book presents the latest numerical solutions to initial value problems and boundary valu problems described by ODES (Ordinary differencial equations) and PDEs (partiral differential equations). The primary focus in numerical solutions to initial value problems (IVPs) and boundary value problems (BVPs).
Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.