Using Additional Information In Streaming Algorithms

Download Using Additional Information In Streaming Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Using Additional Information In Streaming Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Using Additional Information in Streaming Algorithms

Streaming problems are algorithmic problems that are mainly characterized by their massive input streams. Because of these data streams, the algorithms for these problems are forced to be space-efficient, as the input stream length generally exceeds the available storage. The goal of this study is to analyze the impact of additional information (more specifically, a hypothesis of the solution) on the algorithmic space complexities of several streaming problems. To this end, different streaming problems are analyzed and compared. The two problems “most frequent item” and “number of distinct items”, with many configurations of different result accuracies and probabilities, are deeply studied. Both lower and upper bounds for the space and time complexity for deterministic and probabilistic environments are analyzed with respect to possible improvements due to additional information. The general solution search problem is compared to the decision problem where a solution hypothesis has to be satisfied.
Data Streams

In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges.
Algorithms—Advances in Research and Application: 2013 Edition

Algorithms—Advances in Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Coloring Algorithm. The editors have built Algorithms—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Coloring Algorithm in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Algorithms—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.