Univariate Multivariate General Linear Models


Download Univariate Multivariate General Linear Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Univariate Multivariate General Linear Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Univariate and Multivariate General Linear Models


Univariate and Multivariate General Linear Models

Author: Kevin Kim

language: en

Publisher: CRC Press

Release Date: 2006-10-11


DOWNLOAD





Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral

Univariate and Multivariate General Linear Models


Univariate and Multivariate General Linear Models

Author: Kevin Kim

language: en

Publisher: CRC Press

Release Date: 2006-10-11


DOWNLOAD





Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral

Linear Model Theory


Linear Model Theory

Author: Keith E. Muller

language: en

Publisher: John Wiley & Sons

Release Date: 2006-10-06


DOWNLOAD





A precise and accessible presentation of linear model theory, illustrated with data examples Statisticians often use linear models for data analysis and for developing new statistical methods. Most books on the subject have historically discussed univariate, multivariate, and mixed linear models separately, whereas Linear Model Theory: Univariate, Multivariate, and Mixed Models presents a unified treatment in order to make clear the distinctions among the three classes of models. Linear Model Theory: Univariate, Multivariate, and Mixed Models begins with six chapters devoted to providing brief and clear mathematical statements of models, procedures, and notation. Data examples motivate and illustrate the models. Chapters 7-10 address distribution theory of multivariate Gaussian variables and quadratic forms. Chapters 11-19 detail methods for estimation, hypothesis testing, and confidence intervals. The final chapters, 20-23, concentrate on choosing a sample size. Substantial sets of excercises of varying difficulty serve instructors for their classes, as well as help students to test their own knowledge. The reader needs a basic knowledge of statistics, probability, and inference, as well as a solid background in matrix theory and applied univariate linear models from a matrix perspective. Topics covered include: A review of matrix algebra for linear models The general linear univariate model The general linear multivariate model Generalizations of the multivariate linear model The linear mixed model Multivariate distribution theory Estimation in linear models Tests in Gaussian linear models Choosing a sample size in Gaussian linear models Filling the need for a text that provides the necessary theoretical foundations for applying a wide range of methods in real situations, Linear Model Theory: Univariate, Multivariate, and Mixed Models centers on linear models of interval scale responses with finite second moments. Models with complex predictors, complex responses, or both, motivate the presentation.