Une Approche De Compression Orientee Objets Par Suivi De Segmentation Basee Mouvement Pour Le Codage De Sequences D Images Numeriques

Download Une Approche De Compression Orientee Objets Par Suivi De Segmentation Basee Mouvement Pour Le Codage De Sequences D Images Numeriques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Une Approche De Compression Orientee Objets Par Suivi De Segmentation Basee Mouvement Pour Le Codage De Sequences D Images Numeriques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
UNE APPROCHE DE COMPRESSION ORIENTEE-OBJETS PAR SUIVI DE SEGMENTATION BASEE MOUVEMENT POUR LE CODAGE DE SEQUENCES D'IMAGES NUMERIQUES

CETTE THESE DECRIT UNE METHODE D'ANALYSE DE SEQUENCES D'IMAGES NUMERIQUES PAR SUIVI DE SEGMENTATION BASE MOUVEMENT. CETTE METHODE S'INSCRIT DANS LE CADRE GENERAL D'UN SCHEMA DE CODAGE ORIENTE-OBJETS 2D A APPLICATIONS GENERIQUES. GRACE A LA PROCEDURE DE SUIVI TEMPOREL LA SEGMENTATION SPATIO-TEMPORELLE N'EST PAS RECALCULEE SYSTEMATIQUEMENT ENTRE DEUX IMAGES SUCCESSIVES DE LA SEQUENCE, CE QUI ASSURE A LA FOIS UNE COHERENCE TEMPORELLE DE LA SEGMENTATION ET UN GAIN EN COUT DE CODAGE IMPORTANT. NOUS CONSIDERONS COMME HYPOTHESE DE DEPART LE FAIT DE DISPOSER D'UNE SEGMENTATION SPATIO-TEMPORELLE INITIALE ORIENTE-OBJETS. LA METHODE D'ANALYSE QUE NOUS PROPOSONS EST CONSTITUEE DES 3 PHASES ALGORITHMIQUES SUIVANTES: PREDICTION, AJUSTEMENT ET ESTIMATION. LE BUT DE LA PREDICTION EST DE RELIER TEMPORELLEMENT LA CARTE DE SEGMENTATION ENTRE DEUX INSTANTS SUCCESSIFS ; CETTE PROCEDURE EST INITIALISEE PAR LA PROJECTION DE LA SEGMENTATION PREALABLEMENT OBTENUE EN UTILISANT UN MODELE D'EVOLUTION TEMPORELLE. NOUS AVONS TESTE POUR CE FAIRE DEUX MODELES D'EVOLUTION: UNE PROJECTION COURT-TERME ; UNE PROJECTION LONG-TERME QUI EST BASEE SUR UN FILTRAGE RECURSIF DE KALMAN DES DESCRIPTEURS DE MOUVEMENT. LA DEUXIEME ETAPE CONSISTE A VALIDER OU CORRIGER LA SEGMENTATION PROJETEE PAR L'AJUSTEMENT DES ZONES D'OCCLUSION (DITES DE RECOUVREMENT-DECOUVREMENT) DEFINIES PAR LA PROJECTION DE LA SEGMENTATION. CETTE PHASE D'AJUSTEMENT REPOSE SUR UNE MODELISATION MARKOVIENNE (PAR CHAMPS DE MARKOV COUPLES CMRF NOTAMMENT) DE CES ZONES D'OCCLUSION. LA DERNIERE PHASE CONSISTE EN LA RE-ESTIMATION DE MOUVEMENT. DES ALGORITHMES USUELS BASES SUR DES TECHNIQUES DIFFERENTIELLES DE GRADIENT SONT UTILISEES ICI. NOTRE RECHERCHE SE CONCLUT PAR L'EXPERIMENTATION DE CE SCHEMA COMPLET ALGORITHMIQUE SUR DES SEQUENCES D'IMAGES REELLES. UNE PREMIERE EVALUATION EN TERMES DE CODAGE FOURNIT DES RESULTATS PROMETTEURS (TAUX DE COMPRESSION SIMILAIRES POUR DES QUALITES DE RECONSTRUCTION SUPERIEURES AUX STANDARDS ACTUELS EN ASSURANT UNE ANALYSE OBJET DE LA SEQUENCE). QUELQUES PERSPECTIVES PORTANT SUR L'OPTIMISATION DU SCHEMA DE CODAGE DEVRAIT VENIR CONFIRMER CES RESULTATS EXPERIMENTAUX
ESTIMATION DE MOUVEMENT POUR LE CODAGE DE SEQUENCES D'IMAGES

LA CONSIDERATION DES SEQUENCES D'IMAGES NUMERIQUES INTRODUIT UN CHAMP SPECIFIQUE D'INVESTIGATION EN ANALYSE D'IMAGE, A SAVOIR L'EXTRACTION D'INFORMATION DE MOUVEMENT ET PLUS GENERALEMENT D'INFORMATION SPATIO-TEMPORELLE. CE TYPE D'ETUDE A EMERGE AU TRAVERS D'APPLICATIONS VARIEES TELLES QUE LA COMPRESSION DES DONNEES, LA METEOROLOGIE, LE SUIVI DE CIBLE, LA ROBOTIQUE ET LE BIOMEDICAL. LES TECHNIQUES ALORS EMPLOYEES POSSEDENT LEURS CARACTERISTIQUES PROPRES, LIEES AUX CONTRAINTES ET CRITERES DE L'APPLICATION CONSIDEREE. POUR LE CODAGE, LA QUALITE VISUELLE DE L'IMAGE INTENSITE RECONSTRUITE EST PRIMORDIALE MAIS LES LIMITATIONS HARDWARE IMPOSENT DE NE CONSIDERER QUE LES DEPLACEMENTS TRANSLATIONNELS. CECI RESTE UN COMPROMIS DIFFICILE A REALISER POUR LES APPLICATIONS A TRES BAS DEBIT ET IL EST BESOIN DE CONCEVOIR DES METHODES D'AVANT-GARDE EFFICACES, ROBUSTES ET CAPABLES DE PRENDRE EN COMPTE UN LARGE EVENTAIL DE MOUVEMENT. DANS CETTE APPROCHE ALGORITHMIQUE, NOUS CHERCHONS A DEFINIR UN ENSEMBLE DE METHODES QUI NE SOIT PAS FONCIEREMENT DEPENDANT D'UNE APPLICATION OU D'UN TYPE DE SCENE PARTICULIER (TOUT EN RESTANT QUAND MEME PRINCIPALEMENT LIE AU CODAGE) ET QUI TRAITE AUSSI BIEN LES ASPECTS D'ESTIMATION DU MOUVEMENT QUE DE SEGMENTATION. LA FORMULATION PROPOSEE DANS CETTE ETUDE POSSEDE UN CARACTERE METHODOLOGIQUE GENERAL ET POURRA FACILEMENT ETRE ADAPTEE A DES PROBLEMES CONCRETS D'ESTIMATION SPATIO-TEMPORELLE. LE PRINCIPE GENERAL QUI A ORIENTE ET GUIDE CETTE ETUDE EST FONDE SUR LA RECHERCHE D'UNE UTILISATION OPTIMALE DE DESCRIPTEURS GLOBAUX DU MOUVEMENT EN VUE DE L'EXTRACTION DE L'INFORMATION REDONDANTE EXISTANT ENTRE DEUX IMAGES SUCCESSIVES D'UNE SEQUENCES D'IMAGES. CECI NOUS A CONDUIT A IMPLEMENTE LES QUATRE PHASES SUIVANTES: 1) UN MODULE DE SEGMENTATION SPATIALE BASE SUR UNE EBAUCHE 2D1/2 DES IMAGES ET PARTITIONNE LES IMAGES EN OBJETS APPARTENANT A LA MEME COUCHE DE PROFONDEUR. 2) UNE PHASE DE SEGMENTATION SPATIO-TEMPORELLE PERMETTANT L'OBTENTION DE PARTITIONS RELIEES DANS LE TEMPS. LE SCHEMA DE SEGMENTATION EST INITIALISE PAR UN MASQUE SPATIO-TEMPOREL, ET REPOSE SUR APPROCHE STATISTIQUE PAR MODELISATION MARKOVIENNE. IL N'IMPLIQUE PAS DE CONNAISSANCE A PRIORI SUR LE NOMBRE DE REGIONS ET N'IMPOSE AUCUNE HYPOTHESE RESTRICTIVE SUR LA NATURE DU MOUVEMENT 3D. 3) MISE AU POINT ET IMPLANTATION D'UNE NOUVELLE METHODE D'ESTIMATION GLOBALE (OU PAR REGION) DU MOUVEMENT. LA REPRESENTATION DU MOUVEMENT UTILISE PRINCIPALEMENT LES TERMES TRANSLATIONNELS, ROTATIONNELS, DE DIVERGENCE, HYPERBOLIQUES ET QUADRATIQUES. 4) ADAPTATION DES MODELES DE MOUVEMENT AUX DIFFERENTES REGIONS DE L'IMAGE EN UTILISANT DES CRITERES DE SELECTION ADAPTATIVE. L'ETUDE EST ORIENTEE OBJET ; ELLE COMBINE SEGMENTATION SPATIALE ET DETECTION DU MOUVEMENT ; ELLE PREND EN COMPTE LE MOUVEMENT DU CAPTEUR ET ELLE EST BASEE SUR UN MODELE POLYNOMIAL DE PARAMETRES. L'IDENTIFICATION DES PARAMETRES DU MOUVEMENT EST FAITE PAR L'ALGORITHME DE LA REGION DE CONFIANCE. LES APPLICATIONS VISEES SONT LE CODAGE DES SEQUENCES D'IMAGES ET L'INTERPRETATION DU MOUVEMENT POUR LA NAVIGATION ROUTIERE