Understanding Neural Networks And Fuzzy Logic


Download Understanding Neural Networks And Fuzzy Logic PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Understanding Neural Networks And Fuzzy Logic book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Understanding Neural Networks and Fuzzy Logic


Understanding Neural Networks and Fuzzy Logic

Author: Stamatios V. Kartalopoulos

language: en

Publisher: Wiley-IEEE Press

Release Date: 1996


DOWNLOAD





Understand the fundamentals of the emerging field of fuzzy neural networks, their applications and the most used paradigms with this carefully organized state-of-the-art textbook. Previously tested at a number of noteworthy conference tutorials, the simple numerical examples presented in this book provide excellent tools for progressive learning. UNDERSTANDING NEURAL NETWORKS AND FUZZY LOGIC offers a simple presentation and bottom-up approach that is ideal for working professional engineers, undergraduates, medical/biology majors, and anyone with a nonspecialist background. Sponsored by: IEEE Neural Networks Council

NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM


NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM

Author: S. RAJASEKARAN

language: en

Publisher: PHI Learning Pvt. Ltd.

Release Date: 2003-01-01


DOWNLOAD





This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.

NEURAL NETWORKS, FUZZY SYSTEMS AND EVOLUTIONARY ALGORITHMS : SYNTHESIS AND APPLICATIONS


NEURAL NETWORKS, FUZZY SYSTEMS AND EVOLUTIONARY ALGORITHMS : SYNTHESIS AND APPLICATIONS

Author: S. RAJASEKARAN

language: en

Publisher: PHI Learning Pvt. Ltd.

Release Date: 2017-05-01


DOWNLOAD





The second edition of this book provides a comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence, which in recent years, has turned synonymous to it. The constituent technologies discussed comprise neural network (NN), fuzzy system (FS), evolutionary algorithm (EA), and a number of hybrid systems, which include classes such as neuro-fuzzy, evolutionary-fuzzy, and neuro-evolutionary systems. The hybridization of the technologies is demonstrated on architectures such as fuzzy backpropagation network (NN-FS hybrid), genetic algorithm-based backpropagation network (NN-EA hybrid), simplified fuzzy ARTMAP (NN-FS hybrid), fuzzy associative memory (NN-FS hybrid), fuzzy logic controlled genetic algorithm (EA-FS hybrid) and evolutionary extreme learning machine (NN-EA hybrid) Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book, with a wealth of information that is clearly presented and illustrated by many examples and applications, is designed for use as a text for the courses in soft computing at both the senior undergraduate and first-year postgraduate levels of computer science and engineering. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.