Understanding Geologic Carbon Sequestration And Gas Hydrate From Molecular Simulation

Download Understanding Geologic Carbon Sequestration And Gas Hydrate From Molecular Simulation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Understanding Geologic Carbon Sequestration And Gas Hydrate From Molecular Simulation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Understanding Geologic Carbon Sequestration and Gas Hydrate from Molecular Simulation

The development, storage and comprehensive utilization of energy is an important subject concerned by scientists all over the world. Carbon capture and storage technology is one of the most effective mitigation technologies for global climate change, accurate understanding of the migration of multiphase fluids in reservoirs is crucial for reservoir stock evaluation and safety evaluation. Understanding Carbon Geologic Sequestration and Gas Hydrate from Molecular Simulation systematically introduces CO2 geological sequestration and gas hydrate at the molecular-scale, with research including interfacial properties of multiphase, multicomponent systems, hydrogen bonding properties, adsorption characteristics of CO2 / CH4 in the pore, kinetic properties of decomposition/nucleation/growth of gas hydrate, the influence of additives on gas hydrate growth dynamics, and hydrate prevention and control technology. This book focuses on research-based achievements and provides a comprehensive look at global progress in the field. Because there are limited resources available on carbon geologic sequestration technology and gas hydrate technology at the molecular level, the authors wrote this book to fill a gap in scientific literature and prompt further research. - Distills learnings for fundamental and advanced knowledge of molecular simulation in carbon dioxide and gas hydrate storage - Synthesizes knowledge about the development status of CGS technology and hydrate technology in the molecular field – tackling these technologies from a microscopic perspective - Analyzes scientific problems related to CGS technology and hydrate technology based on molecular simulation methods - Explores challenges relative to carbon dioxide and hydrate storage - Provides hierarchical analysis combined with the authors' own research-based case studies for enhanced comprehension and application
Geochemistry of Geologic CO2 Sequestration

Author: Donald J. DePaolo
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2018-12-17
Volume 77 of Reviews in Mineralogy and Geochemistry focuses on important aspects of the geochemistry of geological CO2 sequestration. It is in large part an outgrowth of research conducted by members of the U.S. Department of Energy funded Energy Frontier Research Center (EFRC) known as the Center for Nanoscale Control of Geologic CO2 (NCGC). Eight out of the 15 chapters have been led by team members from the NCGC representing six of the eight partner institutions making up this center - Lawrence Berkeley National Laboratory (lead institution, D. DePaolo - PI), Oak Ridge National Laboratory, The Ohio State University, the University of California Davis, Pacific Northwest National Laboratory, and Washington University, St. Louis.
Chemical Energy from Natural and Synthetic Gas

Commercial development of energy from renewables and nuclear is critical to long-term industry and environmental goals. However, it will take time for them to economically compete with existing fossil fuel energy resources and their infrastructures. Gas fuels play an important role during and beyond this transition away from fossil fuel dominance to a balanced approach to fossil, nuclear, and renewable energies. Chemical Energy from Natural and Synthetic Gas illustrates this point by examining the many roles of natural and synthetic gas in the energy and fuel industry, addressing it as both a "transition" and "end game" fuel. The book describes various types of gaseous fuels and how are they are recovered, purified, and converted to liquid fuels and electricity generation and used for other static and mobile applications. It emphasizes methane, syngas, and hydrogen as fuels, although other volatile hydrocarbons are considered. It also covers storage and transportation infrastructure for natural gas and hydrogen and methods and processes for cleaning and reforming synthetic gas. The book also deals applications, such as the use of natural gas in power production in power plants, engines, turbines, and vehicle needs. Presents a unified and collective look at gas in the energy and fuel industry, addressing it as both a "transition" and "end game" fuel. Emphasizes methane, syngas, and hydrogen as fuels. Covers gas storage and transport infrastructure. Discusses thermal gasification, gas reforming, processing, purification and upgrading. Describes biogas and bio-hydrogen production. Deals with the use of natural gas in power production in power plants, engines, turbines, and vehicle needs.