Understanding Big Data Scalability

Download Understanding Big Data Scalability PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Understanding Big Data Scalability book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Understanding Big Data Scalability

Get Started Scaling Your Database Infrastructure for High-Volume Big Data Applications “Understanding Big Data Scalability presents the fundamentals of scaling databases from a single node to large clusters. It provides a practical explanation of what ‘Big Data’ systems are, and fundamental issues to consider when optimizing for performance and scalability. Cory draws on many years of experience to explain issues involved in working with data sets that can no longer be handled with single, monolithic relational databases.... His approach is particularly relevant now that relational data models are making a comeback via SQL interfaces to popular NoSQL databases and Hadoop distributions.... This book should be especially useful to database practitioners new to scaling databases beyond traditional single node deployments.” —Brian O’Krafka, software architect Understanding Big Data Scalability presents a solid foundation for scaling Big Data infrastructure and helps you address each crucial factor associated with optimizing performance in scalable and dynamic Big Data clusters. Database expert Cory Isaacson offers practical, actionable insights for every technical professional who must scale a database tier for high-volume applications. Focusing on today’s most common Big Data applications, he introduces proven ways to manage unprecedented data growth from widely diverse sources and to deliver real-time processing at levels that were inconceivable until recently. Isaacson explains why databases slow down, reviews each major technique for scaling database applications, and identifies the key rules of database scalability that every architect should follow. You’ll find insights and techniques proven with all types of database engines and environments, including SQL, NoSQL, and Hadoop. Two start-to-finish case studies walk you through planning and implementation, offering specific lessons for formulating your own scalability strategy. Coverage includes Understanding the true causes of database performance degradation in today’s Big Data environments Scaling smoothly to petabyte-class databases and beyond Defining database clusters for maximum scalability and performance Integrating NoSQL or columnar databases that aren’t “drop-in” replacements for RDBMSes Scaling application components: solutions and options for each tier Recognizing when to scale your data tier—a decision with enormous consequences for your application environment Why data relationships may be even more important in non-relational databases Why virtually every database scalability implementation still relies on sharding, and how to choose the best approach How to set clear objectives for architecting high-performance Big Data implementations The Big Data Scalability Series is a comprehensive, four-part series, containing information on many facets of database performance and scalability. Understanding Big Data Scalability is the first book in the series. Learn more and join the conversation about Big Data scalability at bigdatascalability.com.
Big Data

Author: Nathan Marz
language: en
Publisher: Manning Publications Company
Release Date: 2015
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data

Author: Paul Zikopoulos
language: en
Publisher: McGraw Hill Professional
Release Date: 2011-10-22
Big Data represents a new era in data exploration and utilization, and IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is leveraging open source Big Data technology, infused with IBM technologies, to deliver a robust, secure, highly available, enterprise-class Big Data platform. The three defining characteristics of Big Data--volume, variety, and velocity--are discussed. You'll get a primer on Hadoop and how IBM is hardening it for the enterprise, and learn when to leverage IBM InfoSphere BigInsights (Big Data at rest) and IBM InfoSphere Streams (Big Data in motion) technologies. Industry use cases are also included in this practical guide. Learn how IBM hardens Hadoop for enterprise-class scalability and reliability Gain insight into IBM's unique in-motion and at-rest Big Data analytics platform Learn tips and tricks for Big Data use cases and solutions Get a quick Hadoop primer