Understanding And Mitigating Ageing In Nuclear Power Plants

Download Understanding And Mitigating Ageing In Nuclear Power Plants PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Understanding And Mitigating Ageing In Nuclear Power Plants book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Understanding and Mitigating Ageing in Nuclear Power Plants

Plant life management (PLiM) is a methodology focussed on the safety-first management of nuclear power plants over their entire lifetime. It incorporates and builds upon the usual periodic safety reviews and licence renewals as part of an overall framework designed to assist plant operators and regulators in assessing the operating conditions of a nuclear power plant, and establishing the technical and economic requirements for safe, long-term operation.Understanding and mitigating ageing in nuclear power plants critically reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC), along with their relevant analysis and mitigation paths, as well as reactor-type specific PLiM practices. Obsolescence and other less obvious ageing-related aspects in nuclear power plant operation are also examined in depth.Part one introduces the reader to the role of nuclear power in the global energy mix, and the importance and relevance of plant life management for the safety regulation and economics of nuclear power plants. Key ageing degradation mechanisms and their effects in nuclear power plant systems, structures and components are reviewed in part two, along with routes taken to characterise and analyse the ageing of materials and to mitigate or eliminate ageing degradation effects. Part three reviews analysis, monitoring and modelling techniques applicable to the study of nuclear power plant materials, as well as the application of advanced systems, structures and components in nuclear power plants. Finally, Part IV reviews the particular ageing degradation issues, plant designs, and application of plant life management (PLiM) practices in a range of commercial nuclear reactor types.With its distinguished international team of contributors, Understanding and mitigating ageing in nuclear power plants is a standard reference for all nuclear plant designers, operators, and nuclear safety and materials professionals and researchers. - Introduces the reader to the role of nuclear power in the global energy mix - Reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC) - Examines topics including elimination of ageing effects, plant design, and the application of plant life management (PLiM) practices in a range of commercial nuclear reactor types
Advances in Wind Turbine Blade Design and Materials

Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world's consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades.Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades.Advances in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials scientists and engineers, wind turbine blade manufacturers and maintenance technicians, scientists, researchers and academics. - Reviews the design and functionality of wind turbine rotor blades - Examines the requirements and challenges for composite materials used in both current and future designs of wind turbine blades - Provides an invaluable reference for researchers and innovators in the field of wind energy production
Electricity Transmission, Distribution and Storage Systems

Electricity transmission and distribution systems carry electricity from suppliers to demand sites. During transmission materials ageing and performance issues can lead to losses amounting to about 10% of the total generated electricity. Advanced grid technologies are therefore in development to sustain higher network efficiency, while also maintaining power quality and security.Electricity transmission, distribution and storage systems presents a comprehensive review of the materials, architecture and performance of electricity transmission and distribution networks, and the application and integration of electricity storage systems.The first part of the book reviews the fundamental issues facing electricity networks, with chapters discussing Transmission and Distribution (T&D) infrastructure, reliability and engineering, regulation and planning, the protection of T&D networks and the integration of distributed energy resources to the grid. Chapters in part two review the development of transmission and distribution system, with advanced concepts such as FACTS and HVDC, as well as advanced materials such as superconducting material and network components. This coverage is extended in the final section with chapters reviewing materials and applications of electricity storage systems for use in networks, for renewable and distributed generation plant, and in buildings and vehicles, such as batteries and other advanced electricity storage devices.With its distinguished editor, Electricity transmission, distribution and storage systems is an essential reference for materials and electrical engineers, energy consultants, T&D systems designers and technology manufacturers involved in advanced transmission and distribution. - Presents a comprehensive review of the materials, architecture and performance of electricity transmission and distribution networks - Examines the application and integration of electricity storage systems - Reviews the fundamental issues facing electricity networks and examines the development of transmission and distribution systems