Uncertainty Quantification For Wave Propagation And Flow Problems With Random Data

Download Uncertainty Quantification For Wave Propagation And Flow Problems With Random Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Uncertainty Quantification For Wave Propagation And Flow Problems With Random Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Uncertainty quantification for wave propagation and flow problems with random data

Author: Markus Wahlsten
language: en
Publisher: Linköping University Electronic Press
Release Date: 2018-04-09
In this thesis we study partial differential equations with random inputs. The effects that different boundary conditions with random data and uncertain geometries have on the solution are analyzed. Further, comparisons and couplings between different uncertainty quantification methods are performed. The numerical simulations are based on provably strongly stable finite difference formulations based on summation-by-parts operators and a weak implementation of boundary and interface conditions. The first part of this thesis treats the construction of variance reducing boundary conditions. It is shown how the variance of the solution can be manipulated by the choice of boundary conditions, and a close relation between the variance of the solution and the energy estimate is established. The technique is studied on both a purely hyperbolic system as well as an incompletely parabolic system of equations. The applications considered are the Euler, Maxwell's, and Navier--Stokes equations. The second part focuses on the effect of uncertain geometry on the solution. We consider a two-dimensional advection-diffusion equation with a stochastically varying boundary. We transform the problem to a fixed domain where comparisons can be made. Numerical results are performed on a problem in heat transfer, where the frequency and amplitude of the prescribed uncertainty are varied. The final part of the thesis is devoted to the comparison and coupling of different uncertainty quantification methods. An efficiency analysis is performed using the intrusive polynomial chaos expansion with stochastic Galerkin projection, and nonintrusive numerical integration. The techniques are compared using the non-linear viscous Burgers' equation. A provably stable coupling procedure for the two methods is also constructed. The general coupling procedure is exemplified using a hyperbolic system of equations.
Uncertainty Quantification in Computational Fluid Dynamics

Author: Hester Bijl
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-09-20
Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.
2018 MATRIX Annals

MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in 2018: - Non-Equilibrium Systems and Special Functions - Algebraic Geometry, Approximation and Optimisation - On the Frontiers of High Dimensional Computation - Month of Mathematical Biology - Dynamics, Foliations, and Geometry In Dimension 3 - Recent Trends on Nonlinear PDEs of Elliptic and Parabolic Type - Functional Data Analysis and Beyond - Geometric and Categorical Representation Theory The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.