Uncertainty Modelling And Analysis


Download Uncertainty Modelling And Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Uncertainty Modelling And Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Uncertainty Modeling and Analysis in Civil Engineering


Uncertainty Modeling and Analysis in Civil Engineering

Author: Bilal M. Ayyub

language: en

Publisher: CRC Press

Release Date: 1997-12-29


DOWNLOAD





With the expansion of new technologies, materials, and the design of complex systems, the expectations of society upon engineers are becoming larger than ever. Engineers make critical decisions with potentially high adverse consequences. The current political, societal, and financial climate requires engineers to formally consider the factors of uncertainty (e.g., floods, earthquakes, winds, environmental risks) in their decisions at all levels. Uncertainty Modeling and Analysis in Civil Engineering provides a thorough report on the immediate state of uncertainty modeling and analytical methods for civil engineering systems, presenting a toolbox for solving problems in real-world situations. Topics include Neural networks Genetic algorithms Numerical modeling Fuzzy sets and operations Reliability and risk analysis Systems control Uncertainty in probability estimates This compendium is a considerable reference for civil engineers as well as for engineers in other disciplines, computer scientists, general scientists, and students.

Uncertainty Analysis with High Dimensional Dependence Modelling


Uncertainty Analysis with High Dimensional Dependence Modelling

Author: Dorota Kurowicka

language: en

Publisher: John Wiley & Sons

Release Date: 2006-10-02


DOWNLOAD





Mathematical models are used to simulate complex real-world phenomena in many areas of science and technology. Large complex models typically require inputs whose values are not known with certainty. Uncertainty analysis aims to quantify the overall uncertainty within a model, in order to support problem owners in model-based decision-making. In recent years there has been an explosion of interest in uncertainty analysis. Uncertainty and dependence elicitation, dependence modelling, model inference, efficient sampling, screening and sensitivity analysis, and probabilistic inversion are among the active research areas. This text provides both the mathematical foundations and practical applications in this rapidly expanding area, including: An up-to-date, comprehensive overview of the foundations and applications of uncertainty analysis. All the key topics, including uncertainty elicitation, dependence modelling, sensitivity analysis and probabilistic inversion. Numerous worked examples and applications. Workbook problems, enabling use for teaching. Software support for the examples, using UNICORN - a Windows-based uncertainty modelling package developed by the authors. A website featuring a version of the UNICORN software tailored specifically for the book, as well as computer programs and data sets to support the examples. Uncertainty Analysis with High Dimensional Dependence Modelling offers a comprehensive exploration of a new emerging field. It will prove an invaluable text for researches, practitioners and graduate students in areas ranging from statistics and engineering to reliability and environmetrics.

Uncertainty Modelling and Analysis


Uncertainty Modelling and Analysis

Author: Bilal M. Ayyub

language: en

Publisher: Elsevier Publishing Company

Release Date: 1994


DOWNLOAD





Vital information on machine intelligence and pattern recognition is provided by this publication. In particular, the 31 papers discuss the ways in which uncertainty modelling and analysis are becoming an integral part of system definition and modelling in many fields. Contributions are sourced from an international base of researchers, scientists and engineers working on theoretical developments and diversified applications in engineering systems. The book is divided into two main parts. The first, Uncertainty Models and Measures, includes chapters on theoretical studies and developments carried out on uncertainty (including cognitive uncertainty and how it relates to information and intelligence), information, fuzzy logic, expert systems and neural networks. There are also chapters on modelling uncertainty in the reliability assessment of complex systems, linguistic connectives, the principle of maximum buoyancy, uncertain evidence, inductive learning, convex modelling, new uncertainty measures and information and uncertainty.The larger second part, Applications to Engineering Systems, contains application-oriented studies in fields related to civil, electrical, energy and general engineering systems. The papers cover studies on general uncertainty types in structural engineering, bridges, transmission structures, structural reliability, structural identification, system life cycle analysis, control, construction activities, decision analysis, signal detection, risk management, product quality, military command and control, data bases, long-term projections and predictions and assessment of insurance indices.The book conveys the excitement, advances and promises that all these fields offer to our expanding information-based technological society. It also hopes to stimulate the interest of other researchers around the world who are facing the challenge of new theoretical studies and innovative technological changes.