Uncertain Multi Criteria Optimization Problems

Download Uncertain Multi Criteria Optimization Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Uncertain Multi Criteria Optimization Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Uncertain Multi-Criteria Optimization Problems

Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems.
Uncertain Multi-Criteria Optimization Problems

Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems.
Nonlinear Interval Optimization for Uncertain Problems

This book systematically discusses nonlinear interval optimization design theory and methods. Firstly, adopting a mathematical programming theory perspective, it develops an innovative mathematical transformation model to deal with general nonlinear interval uncertain optimization problems, which is able to equivalently convert complex interval uncertain optimization problems to simple deterministic optimization problems. This model is then used as the basis for various interval uncertain optimization algorithms for engineering applications, which address the low efficiency caused by double-layer nested optimization. Further, the book extends the nonlinear interval optimization theory to design problems associated with multiple optimization objectives, multiple disciplines, and parameter dependence, and establishes the corresponding interval optimization models and solution algorithms. Lastly, it uses the proposed interval uncertain optimization models and methods to deal with practical problems in mechanical engineering and related fields, demonstrating the effectiveness of the models and methods.