Ultrafast Supercontinuum Generation In Transparent Solid State Media

Download Ultrafast Supercontinuum Generation In Transparent Solid State Media PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ultrafast Supercontinuum Generation In Transparent Solid State Media book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Ultrafast Supercontinuum Generation in Transparent Solid-State Media

This book presents the underlying physical picture and an overview of the state of the art of femtosecond supercontinuum generation in various transparent solid-state media, ranging from wide-bandgap dielectrics to semiconductor materials, and across various parts of the optical spectrum, from the ultraviolet to the mid-infrared. A particular emphasis is placed on the most recent experimental developments: multioctave supercontinuum generation with pumping in the mid-infrared spectral range, spectral control, power and energy scaling of broadband radiation and the development of simple, flexible and robust pulse compression techniques, which deliver few optical cycle pulses and which could be readily implemented in a variety of modern ultrafast laser systems. The expected audience includes graduate students, professionals and scientists working in the field of laser-matter interactions and ultrafast nonlinear optics.
Integrated Optical Supercontinuum Generation

This book highlights the physics, research advances, and applications of integrated optical supercontinuum generation (SCG). The authors provide a roadmap of SCG in various nonlinear media and its historical perspective. The commonly used materials of integrated platforms are discussed, which could provide the references for platform choices in various nonlinear applications. The book introduces the fundamental light-guiding mechanisms, explains the typical dispersion engineering approaches, and summarizes various types of integrated waveguides. The authors present an overview of the physical mechanisms and fundamental equations involved in the SCG. They conduct an in-depth discussion on different types of nonlinear Schrödinger equation (NLSE) to adapt to various circumstances. Through these equations, readers can numerically model the SCG processes. In particular, the book reviews recent representative SCG reports in the integrated waveguides. Moreover, because of the close relationship between the frequency combs and SC, the book discusses some basic concepts of a frequency comb. Finally, the authors raise future prospects on SCG in the integrated waveguides. The book is a comprehensive reference for graduate students and researchers interested in the subject and a handy manual for professionals engaged in related work.
Self-Organized Surface Structures with Ultrafast White-Light

Sebastian Uhlig presents the first experimental investigation of self-organized surface structures (LIPSS) generated by ablation from different (semiconductor and metallic) targets with an ultrafast white-light continuum (WLC) spreading in wavelength from 400-750 nm. The main goal is to study the possibility of LIPSS formation upon irradiation with an incoherent and polychromatic light source (e.g. the WLC) in order to discriminate between the two debated formation scenarios. The generation of a suitable WLC in terms of sufficient white-light pulse energy, broad spectral bandwidth, and low spatial coherence for the LIPSS generation, as well as the characterization of this WLC are additional important objectives of this work.