Ultimate Python Libraries For Data Analysis And Visualization

Download Ultimate Python Libraries For Data Analysis And Visualization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ultimate Python Libraries For Data Analysis And Visualization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Ultimate Python Libraries for Data Analysis and Visualization

Author: Abhinaba Banerjee
language: en
Publisher: Orange Education Pvt Ltd
Release Date: 2024-04-04
Test your Data Analysis skills to its fullest using Python and other no-code tools KEY FEATURES ● Comprehensive coverage of Python libraries such as Pandas, NumPy, Matplotlib, Seaborn, Julius AI for data acquisition, preparation, analysis, and visualization ● Real-world projects and practical applications for hands-on learning ● In-depth exploration of low-code and no-code tools for enhanced productivity DESCRIPTION Ultimate Data Analysis and Visualization with Python is your comprehensive guide to mastering the intricacies of data analysis and visualization using Python. This book serves as your roadmap to unlocking the full potential of Python for extracting insights from data using Pandas, NumPy, Matplotlib, Seaborn, and Julius AI. Starting with the fundamentals of data acquisition, you'll learn essential techniques for gathering and preparing data for analysis. From there, you’ll dive into exploratory data analysis, uncovering patterns and relationships hidden within your datasets. Through step-by-step tutorials, you'll gain proficiency in statistical analysis, time series forecasting, and signal processing, equipping you with the tools to extract actionable insights from any dataset. What sets this book apart is its emphasis on real-world applications. With a series of hands-on projects, you’ll apply your newfound skills to analyze diverse datasets spanning industries such as finance, healthcare, e-commerce, and more. By the end of the book, you'll have the confidence and expertise to tackle any data analysis challenge with Python. To aid your journey, the book includes a handy Python cheat sheet in the appendix, serving as a quick reference guide for common functions and syntax. WHAT WILL YOU LEARN ● Acquire data from various sources using Python, including web scraping, APIs, and databases. ● Clean and prepare datasets for analysis, handling missing values, outliers, and inconsistencies. ● Conduct exploratory data analysis to uncover patterns, trends, and relationships within your data. ● Perform statistical analysis using Python libraries such as NumPy and Pandas, including hypothesis testing and regression analysis. ● Master time series analysis techniques for forecasting future trends and making data-driven decisions. ● Apply signal processing methods to analyze and interpret signals in data, such as audio, image, and sensor data. ● Engage in real-world projects across diverse industries, from finance to healthcare, to reinforce your skills and experience. ● Utilize Python for in-depth analysis of real-world datasets, gaining practical experience and insights. ● Refer to the Python cheat sheet in the appendix for quick access to common functions and syntax, aiding your learning and development. WHO IS THIS BOOK FOR? This book is ideal for beginners, professionals, or students aiming to enhance their careers through hands-on experience in data acquisition, preparation, analysis, time series, and signal processing. Prerequisite knowledge includes basic Python and introductory statistics. Whether starting fresh or seeking to refresh skills, this comprehensive guide helps readers upskill effectively. TABLE OF CONTENTS 1. Introduction to Data Analysis and Data Visualization using Python 2. Data Acquisition 3. Data Cleaning and Preparation 4. Exploratory Data Analysis 5. Statistical Analysis 6. Time Series Analysis and Forecasting 7. Signal Processing 8. Analyzing Real-World Data Sets using Python APPENDIX A Python Cheat Sheet Index
Ultimate Python Libraries for Data Analysis and Visualization: Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, Visualization, and Statistical Analysis

Author: Abhinaba Banerjee
language: en
Publisher: Orange Education Pvt Limited
Release Date: 2024-04-04
Test your Data Analysis skills to its fullest using Python and other no-code tools Key Features ● Comprehensive coverage of Python libraries such as Pandas, NumPy, Matplotlib, Seaborn, Julius AI for data acquisition, preparation, analysis, and visualization ● Real-world projects and practical applications for hands-on learning ● In-depth exploration of low-code and no-code tools for enhanced productivity Book Description Ultimate Data Analysis and Visualization with Python is your comprehensive guide to mastering the intricacies of data analysis and visualization using Python. This book serves as your roadmap to unlocking the full potential of Python for extracting insights from data using Pandas, NumPy, Matplotlib, Seaborn, and Julius AI. Starting with the fundamentals of data acquisition, you'll learn essential techniques for gathering and preparing data for analysis. From there, you’ll dive into exploratory data analysis, uncovering patterns and relationships hidden within your datasets. Through step-by-step tutorials, you'll gain proficiency in statistical analysis, time series forecasting, and signal processing, equipping you with the tools to extract actionable insights from any dataset. What sets this book apart is its emphasis on real-world applications. With a series of hands-on projects, you’ll apply your newfound skills to analyze diverse datasets spanning industries such as finance, healthcare, e-commerce, and more. By the end of the book, you'll have the confidence and expertise to tackle any data analysis challenge with Python. To aid your journey, the book includes a handy Python cheat sheet in the appendix, serving as a quick reference guide for common functions and syntax. What you will learn ● Acquire data from various sources using Python, including web scraping, APIs, and databases. ● Clean and prepare datasets for analysis, handling missing values, outliers, and inconsistencies. ● Conduct exploratory data analysis to uncover patterns, trends, and relationships within your data. ● Perform statistical analysis using Python libraries such as NumPy and Pandas, including hypothesis testing and regression analysis. ● Master time series analysis techniques for forecasting future trends and making data-driven decisions. ● Apply signal processing methods to analyze and interpret signals in data, such as audio, image, and sensor data. ● Engage in real-world projects across diverse industries, from finance to healthcare, to reinforce your skills and experience. Table of Contents 1. Introduction to Data Analysis and Data Visualization using Python 2. Data Acquisition 3. Data Cleaning and Preparation 4. Exploratory Data Analysis 5. Statistical Analysis 6. Time Series Analysis and Forecasting 7. Signal Processing 8. Analyzing Real-World Data Sets using Python APPENDIX A Python Cheat Sheet Index
Python for Data Analysis

★ 55% OFF for Bookstores! NOW at $41,97 instead of $51,97!Do you want to learn more about Data Analysis and how to master it with Python?Your Customers Will Love This Amazing Guide! Everyone talks about data today. You have probably come across the term "data" more times than you can remember in one day. Data as a concept is so wide. One thing that is true about data is that it can be used to tell a story. The story could be anything from explaining an event to predicting the future. Data is the future. Businesses, governments, organizations, criminals-everyone needs data for some reason. Entities are investing in different data approaches to help them understand their current situation, and use it to prepare for the unknown. The world of technology as we know it is evolving towards an open-source platform where people share ideas freely. This is seen as the first step towards the decentralization of ideas and eliminating unnecessary monopolies. Therefore, the data, tools, and techniques used in the analysis are easily available for anyone to interpret data sets and get relevant explanations. With Python for Data Analysis you will learn about the main steps that are needed to correctly implement Data Analysis and the procedures to help you extract the right insights from the right data. Some of the topics that we will discuss inside include: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis Pandas, Jupyter and PyTorch The 7 Python libraries that make Python one of the best choices for Data Analysis Neural Network How Data Visualization and Matplotlib can help you to understand the data you are working with. Some of the main industries that are using data to improve their business with 14 real-world applications And Much More! While most books focus on how to implement advanced predictive models, this book takes the time to explain the basic concepts and all the necessary steps to correctly implement Data Analysis, including Data Visualization and providing practical examples and simple coding scripts. Don't miss the opportunity to learn more about these topics. Even if you never used Data Analysis, learning it is easier than it looks, you just need the right guidance. This practical guide provides all the knowledge you need in a simple and practical way. Regardless of your previous experience, you will learn the steps of Data Analysis, how to implement them in Python, and the most important real-world applications. Would You Like To Know More? Buy it NOW and Let Your Customers Get Addicted to This Amazing Book!