Two Problems On Option Pricing

Download Two Problems On Option Pricing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Two Problems On Option Pricing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Numerical Solution Of The American Option Pricing Problem, The: Finite Difference And Transform Approaches

The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pricing, including the method of lines, the component wise splitting and the finite difference with PSOR. The other approach is the integral transform approach which includes Fourier or Fourier Cosine transforms. Written in a concise and systematic manner, Chiarella, Kang and Meyer explain and demonstrate the advantages and limitations of each of them based on their and their co-workers' experiences with these approaches over the years.
The Numerical Solution of the American Option Pricing Problem

The early exercise opportunity of an American option makes it challenging to price and an array of approaches have been proposed in the vast literature on this topic. In The Numerical Solution of the American Option Pricing Problem, Carl Chiarella, Boda Kang and Gunter Meyer focus on two numerical approaches that have proved useful for finding all prices, hedge ratios and early exercise boundaries of an American option. One is a finite difference approach which is based on the numerical solution of the partial differential equations with the free boundary problem arising in American option pricing, including the method of lines, the component wise splitting and the finite difference with PSOR. The other approach is the integral transform approach which includes Fourier or Fourier Cosine transforms. Written in a concise and systematic manner, Chiarella, Kang and Meyer explain and demonstrate the advantages and limitations of each of them based on their and their co-workers'' experiences with these approaches over the years. Contents: Introduction; The Merton and Heston Model for a Call; American Call Options under Jump-Diffusion Processes; American Option Prices under Stochastic Volatility and Jump-Diffusion Dynamics OCo The Transform Approach; Representation and Numerical Approximation of American Option Prices under Heston; Fourier Cosine Expansion Approach; A Numerical Approach to Pricing American Call Options under SVJD; Conclusion; Bibliography; Index; About the Authors. Readership: Post-graduates/ Researchers in finance and applied mathematics with interest in numerical methods for American option pricing; mathematicians/physicists doing applied research in option pricing. Key Features: Complete discussion of different numerical methods for American options; Able to handle stochastic volatility and/or jump diffusion dynamics; Able to produce hedge ratios efficiently and accurately"
Problems and Solutions in Mathematical Finance, Volume 2

Detailed guidance on the mathematics behind equity derivatives Problems and Solutions in Mathematical Finance Volume II is an innovative reference for quantitative practitioners and students, providing guidance through a range of mathematical problems encountered in the finance industry. This volume focuses solely on equity derivatives problems, beginning with basic problems in derivatives securities before moving on to more advanced applications, including the construction of volatility surfaces to price exotic options. By providing a methodology for solving theoretical and practical problems, whilst explaining the limitations of financial models, this book helps readers to develop the skills they need to advance their careers. The text covers a wide range of derivatives pricing, such as European, American, Asian, Barrier and other exotic options. Extensive appendices provide a summary of important formulae from calculus, theory of probability, and differential equations, for the convenience of readers. As Volume II of the four-volume Problems and Solutions in Mathematical Finance series, this book provides clear explanation of the mathematics behind equity derivatives, in order to help readers gain a deeper understanding of their mechanics and a firmer grasp of the calculations. Review the fundamentals of equity derivatives Work through problems from basic securities to advanced exotics pricing Examine numerical methods and detailed derivations of closed-form solutions Utilise formulae for probability, differential equations, and more Mathematical finance relies on mathematical models, numerical methods, computational algorithms and simulations to make trading, hedging, and investment decisions. For the practitioners and graduate students of quantitative finance, Problems and Solutions in Mathematical Finance Volume II provides essential guidance principally towards the subject of equity derivatives.