Tumor Otak Analisis Klasifikasi Dan Deteksi Menggunakan Machine Learning Dan Deep Learning Dengan Python Gui

Download Tumor Otak Analisis Klasifikasi Dan Deteksi Menggunakan Machine Learning Dan Deep Learning Dengan Python Gui PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tumor Otak Analisis Klasifikasi Dan Deteksi Menggunakan Machine Learning Dan Deep Learning Dengan Python Gui book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
TUMOR OTAK: Analisis, Klasifikasi, dan Deteksi Menggunakan Machine Learning dan Deep Learning dengan Python GUI

Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “BRAIN TUMOR: Analysis, Classification, and Detection Using Machine Learning and Deep Learning with Python GUI”. Anda dapat menemukannya di Google Books dan Amazon. Tentu, Anda telah banyak menjumpai buku-buku yang memberikan pemahaman fundamental dan teoritis yang berkaitan dengan Machine Learning dan Deep Learning. Berbeda dari buku-buku tersebut, buku ini diperuntukkan bagi Anda yang ingin mengupas data science, khususnya Machine Learning dan Deep Learning, dengan secara langsung mempraktekkannya dalam sebuah proyek. Hal ini akan meningkatkan kemampuan pemrograman Anda ketika Anda nantinya berniat untuk menjadi seorang Data Scientist. Pada proyek ini, Anda akan mempelajari cara menggunakan Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, dan pustaka lainnya untuk menerapkan analisis, klasifikasi dan deteksi tumor otak dengan pembelajaran mesin (Machine Learning) dan Deep Learning menggunakan dataset Brain Tumor yang disediakan di Kaggle. Dataset ini berisi lima fitur orde pertama: Mean (kontribusi intensitas piksel individu untuk seluruh gambar), Variance (digunakan untuk menemukan bagaimana setiap piksel bervariasi dari piksel tetangga 0, Standard Deviation (deviasi nilai terukur atau data dari mean), Skewness (ukuran simetri), dan Kurtosis (menggambarkan puncak, misalnya, distribusi frekuensi). Dataset ini juga berisi delapan fitur orde kedua: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, dan Coarseness. Model machine learning yang digunakan dalam proyek ini adalah K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, dan Support Vector Machine. Model deep learning yang digunakan dalam proyek ini adalah MobileNet dan ResNet50. Pada proyek ini, Anda akan mengembangkan GUI menggunakan PyQt5 untuk menampilkan decision boundary, ROC, distribusi fitur, feature importance, skor validasi silang, dan nilai terprediksi versus nilai sebenarnya, confusion matrix, rugi pelatihan, dan akurasi pelatihan.
Data Science Dengan Python GUI Untuk Programmer

Buku 1: Pemrograman DATA SCIENCE dengan Python GUI: Studi Kasus Dataset Diabetes Dan Kanker Payudara Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Practical Data Science Programming for Medical Datasets Analysis and Prediction with Python GUI”. Anda dapat menemukannya di Google Books dan Amazon. Pada proyek pertama, Anda akan mempelajari cara menggunakan Scikit-Learn, SVM, NumPy, Pandas, dan library lainnya untuk melakukan cara memprediksi diabetes tahap awal menggunakan Early Stage Diabetes Risk Prediction Dataset yang disediakan di Kaggle. Dataset ini berisi data tanda dan gejala penderita diabetes atau pasien yang berpotensi mengidap diabetes. Dataset telah dikumpulkan dengan menggunakan kuesioner langsung dari pasien Rumah Sakit Sylhet Diabetes di Sylhet, Bangladesh dan disetujui oleh dokter. Dataset terdiri dari total 15 fitur dan satu variabel target bernama class. Pada proyek ini, Anda akan mengembangkan GUI menggunakan PyQt5 untuk menampilkan distribusi fitur, feature importance, skor validasi silang, dan nilai terprediksi versus nilai sebenarnya, dan confusion matrix. Pada proyek kedua, Anda akan belajar bagaimana menerapkan Scikit-Learn, NumPy, Pandas, dan sejumlah pustaka lain untuk menganalisa dan memprediksi kanker payudara menggunakan Breast Cancer Prediction Dataset yang disediakan di Kaggle. Di seluruh dunia, kanker payudara adalah jenis kanker yang paling umum pada wanita dan tertinggi kedua dalam hal angka kematian. Diagnosis kanker payudara dilakukan ketika ditemukan benjolan abnormal (dari pemeriksaan sendiri atau x-ray) atau setitik kecil dari kalsium yang terlihat (pada x-ray). Setelah benjolan yang mencurigakan ditemukan, dokter akan melakukan diagnosis untuk menentukan apakah itu kanker dan, jika ya, apakah sudah menyebar ke bagian tubuh lain. Dataset kanker payudara ini diperoleh dari University of Wisconsin Hospitals, Madison dari Dr. William H. Wolberg. Pada proyek ini, Anda juga akan mengembangkan GUI menggunakan PyQt5 untuk menampilkan decision boundary, ROC, distribusi fitur, feature importance, skor validasi silang, dan nilai terprediksi versus nilai sebenarnya, dan confusion matrix. Buku 2: IMPLEMENTASI DATA SCIENCE BERBASIS PROYEK DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Step by Step Project-Based Tutorials for Data Science with Python GUI: Traffic and Heart Attack Analysis and Prediction”. Anda dapat menemukannya di Google Books dan Amazon. Pada Bab 1, Anda akan mempelajari dasar-dasar pemrograman Python GUI dengan PyQ5. Anda akan belajar menciptakan sejumlah GUI dengan bantuan Qt Designer. Pada proyek di Bab 2, Anda akan belajar menggunakan dan menerapkan modul Scikit-Learn, NumPy, Pandas, dan sejumlah modul lain untuk menganalisa dan memprediksi serangan jantung menggunakan Heart Attack Analysis & Prediction Dataset yang disediakan di Kaggle. Di sini, Anda akan mengembangkan sebuah GUI untuk menampilkan distribusi tiap fitur pada dataset, matriks korelasi, confusion matrix, dan nilai-nilai sebenarnya versus nilai-nilai prediksi. Model-model machine learning yang dipakai pada proyek ini adalah Logistic Regression, K-Nearest Neighbor, Support Vector Machine, Decision Tree, Random Forest, Adaboost, Gradient Boosting, SGBoost, dan MLP. Pada proyek di Bab 3, Anda akan belajar dan menerapkan Scikit-Learn, Scipy, dan sejumlah pustaka lain untuk mengimplementasikan bagaimana menganalisa dan memprediksi trafik kendaraan pada empat persimpangan jalan menggunakan Traffic Prediction Dataset yang disediakan di Kaggle. Dataset memuat 48.1k (48120) observasi banyaknya kendaraan tiap jam di empat persimpangan jalan berbeda. Dataset ini memuat empat kolom: 1) DateTime; 2) Juction; 3) Vehicles; dan 4) ID. Pada proyek ini, Anda akan mengembangkan sebuah GUI untuk menampilkan distribusi kerapatan probabilitas tiap fitur, data pada tiap persimpangan dalam runtun waktu, distribusi banyak kendaraan berdasarkan waktu (tahun, bulan, dan hari) dan persimpangan, matriks korelasi, korelasi-diri parsial, hasil pelatihan model-model Random Forest, keutamaan fitur, dan banyak kendaraan berdasarkan hari untuk beberapa bulan ke depan. Buku 3: TUMOR OTAK: Analisis, Klasifikasi, dan Deteksi Menggunakan Machine Learning dan Deep Learning dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “BRAIN TUMOR: Analysis, Classification, and Detection Using Machine Learning and Deep Learning with Python GUI”. Anda dapat menemukannya di Google Books dan Amazon. Tentu, Anda telah banyak menjumpai buku-buku yang memberikan pemahaman fundamental dan teoritis yang berkaitan dengan Machine Learning dan Deep Learning. Berbeda dari buku-buku tersebut, buku ini diperuntukkan bagi Anda yang ingin mengupas data science, khususnya Machine Learning dan Deep Learning, dengan secara langsung mempraktekkannya dalam sebuah proyek. Hal ini akan meningkatkan kemampuan pemrograman Anda ketika Anda nantinya berniat untuk menjadi seorang Data Scientist. Pada proyek ini, Anda akan mempelajari cara menggunakan Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, dan pustaka lainnya untuk menerapkan analisis, klasifikasi dan deteksi tumor otak dengan pembelajaran mesin (Machine Learning) dan Deep Learning menggunakan dataset Brain Tumor yang disediakan di Kaggle. Dataset ini berisi lima fitur orde pertama: Mean (kontribusi intensitas piksel individu untuk seluruh gambar), Variance (digunakan untuk menemukan bagaimana setiap piksel bervariasi dari piksel tetangga 0, Standard Deviation (deviasi nilai terukur atau data dari mean), Skewness (ukuran simetri), dan Kurtosis (menggambarkan puncak, misalnya, distribusi frekuensi). Dataset ini juga berisi delapan fitur orde kedua: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, dan Coarseness. Model machine learning yang digunakan dalam proyek ini adalah K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, dan Support Vector Machine. Model deep learning yang digunakan dalam proyek ini adalah MobileNet dan ResNet50. Pada proyek ini, Anda akan mengembangkan GUI menggunakan PyQt5 untuk menampilkan decision boundary, ROC, distribusi fitur, feature importance, skor validasi silang, dan nilai terprediksi versus nilai sebenarnya, confusion matrix, rugi pelatihan, dan akurasi pelatihan.
Data Mining for the Masses

Have you ever found yourself working with a spreadsheet full of data and wishing you could make more sense of the numbers? Have you reviewed sales or operations reports, wondering if there's a better way to anticipate your customers' needs? Perhaps you've even thought to yourself: There's got to be more to these figures than what I'm seeing! Data Mining can help, and you don't need a Ph.D. in Computer Science to do it. You can forecast staffing levels, predict demand for inventory, even sift through millions of lines of customer emails looking for common themes-all using data mining. It's easier than you might think. In Data Mining for the Masses, professor Matt North-a former risk analyst and database developer for eBay.com-uses simple examples, clear explanations and free, powerful, easy-to-use software to teach you the basics of data mining; techniques that can help you answer some of your toughest business questions. You've got data and you know it's got value, if only you can figure out how to unlock it. This book can show you how. Let's start digging! Through an agreement with the Global Text Project, an electronic version of this text is available online at (http://globaltext.terry.uga.edu/books). Proceeds from the sales of printed copies through Amazon enable the author to support the Global Text Project's goal of making electronic texts available to students in developing economies.