Tsunami Engineering Perspective For Mitigation Protection And Modeling

Download Tsunami Engineering Perspective For Mitigation Protection And Modeling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tsunami Engineering Perspective For Mitigation Protection And Modeling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Tsunami: Engineering Perspective For Mitigation, Protection And Modeling

The most pertinent tsunami related issues such as water borne debris during tsunami flooding, design loads to incorporate for impact forces on coastal zone infrastructure, detection and warning are meticulously incorporated in this book.Modelling of various coastal processes have proven to be successful in the recent past, which includes extreme events such as storm surge, cyclone, etc. The possible provisions for computational/numerical tsunami modelling and real physical modelling in laboratory are elaborated. The propagation, evolution and run-up of tsunami waves and their associated non-linear dynamics are discussed.The significant inferences from the experts who have had hands-on experience working with the extensive magnitude of a tsunami disaster reported on the signature studies and post-facto effects of the 2004 Indian Ocean Tsunami, with respect to the damages along the Indian coast.
Numerical Modeling Of Tsunami Waves

This monograph aims at presenting a unified approach to numerical modeling of tsunami as long waves based on finite difference methods for 1D, 2D and 3D generation processes, propagation, and runup. Many practical examples give insight into the relationship between long wave physics and numerical solutions and allow readers to quickly pursue and develop specific topics in greater depth. The aim of this book is to start from basics and then continue into applications. This approach should serve well the needs of researchers and students of physics, physical oceanography, ocean/civil engineers, computer science, and emergency management staff. Chapter 2 is particularly valuable as it fully describes the application of finite-difference methods to the study of long waves by demonstrating how physical properties of water waves, especially phase velocity, are connected to the chosen numerical algorithm. Basic notions of numerical methods, i.e. approximation of the relevant differential equations, stability of the numerical scheme, and computational errors are explained through application to long waves. Finite-difference methods are further developed in major chapters to deal with complex problems that arise in the study of recent tsunamis.