Tropical And Logarithmic Methods In Enumerative Geometry


Download Tropical And Logarithmic Methods In Enumerative Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tropical And Logarithmic Methods In Enumerative Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Tropical and Logarithmic Methods in Enumerative Geometry


Tropical and Logarithmic Methods in Enumerative Geometry

Author: Renzo Cavalieri

language: en

Publisher: Springer Nature

Release Date: 2023-09-30


DOWNLOAD





This book is based on the lectures given at the Oberwolfach Seminar held in Fall 2021. Logarithmic Gromov-Witten theory lies at the heart of modern approaches to mirror symmetry, but also opens up a number of new directions in enumerative geometry of a more classical flavour. Tropical geometry forms the calculus through which calculations in this subject are carried out. These notes cover the foundational aspects of this tropical calculus, geometric aspects of the degeneration formula for Gromov-Witten invariants, and the practical nuances of working with and enumerating tropical curves. Readers will get an assisted entry route to the subject, focusing on examples and explicit calculations.

Introduction to Tropical Geometry


Introduction to Tropical Geometry

Author: Diane Maclagan

language: en

Publisher: American Mathematical Society

Release Date: 2021-12-13


DOWNLOAD





Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of the six chapters concludes with problems that will help the readers to practice their tropical skills, and to gain access to the research literature. This wonderful book will appeal to students and researchers of all stripes: it begins at an undergraduate level and ends with deep connections to toric varieties, compactifications, and degenerations. In between, the authors provide the first complete proofs in book form of many fundamental results in the subject. The pages are sprinkled with illuminating examples, applications, and exercises, and the writing is lucid and meticulous throughout. It is that rare kind of book which will be used equally as an introductory text by students and as a reference for experts. —Matt Baker, Georgia Institute of Technology Tropical geometry is an exciting new field, which requires tools from various parts of mathematics and has connections with many areas. A short definition is given by Maclagan and Sturmfels: “Tropical geometry is a marriage between algebraic and polyhedral geometry”. This wonderful book is a pleasant and rewarding journey through different landscapes, inviting the readers from a day at a beach to the hills of modern algebraic geometry. The authors present building blocks, examples and exercises as well as recent results in tropical geometry, with ingredients from algebra, combinatorics, symbolic computation, polyhedral geometry and algebraic geometry. The volume will appeal both to beginning graduate students willing to enter the field and to researchers, including experts. —Alicia Dickenstein, University of Buenos Aires, Argentina

Calabi-Yau Varieties: Arithmetic, Geometry and Physics


Calabi-Yau Varieties: Arithmetic, Geometry and Physics

Author: Radu Laza

language: en

Publisher: Springer

Release Date: 2015-08-27


DOWNLOAD





This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and arithmetic aspects, the book gives a comprehensive overview of the current streams of mathematical research in the area. The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.” The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties.