Transients In Electrical Systems Analysis Recognition And Mitigation

Download Transients In Electrical Systems Analysis Recognition And Mitigation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Transients In Electrical Systems Analysis Recognition And Mitigation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Transients in Electrical Systems: Analysis, Recognition, and Mitigation

Author: J. C. Das
language: en
Publisher: McGraw Hill Professional
Release Date: 2010-05-06
Detect and Mitigate Transients in Electrical Systems This practical guide explains how to identify the origin of disturbances in electrical systems and analyze them for effective mitigation and control. Transients in Electrical Systems considers all transient frequencies, ranging from 0.1 Hz to 50 MHz, and discusses transmission line and cable modeling as well as frequency dependent behavior. Results of EMTP simulations, solved examples, and detailed equations are included in this comprehensive resource. Transients in Electrical Systems covers: Transients in lumped circuits Control systems Lightning strokes, shielding, and backflashovers Transients of shunt capacitor banks Switching transients and temporary overvoltages Current interruption in AC circuits Symmetrical and unsymmetrical short-circuit currents Transient behavior of synchronous generators, induction and synchronous motors, and transformers Power electronic equipment Flicker, bus, transfer, and torsional vibrations Insulation coordination Gas insulated substations Transients in low-voltage and grounding systems Surge arresters DC systems, short-circuits, distributions, and HVDC Smart grids and wind power generation
Transient Analysis of Power Systems

Author: Juan A. Martinez-Velasco
language: en
Publisher: John Wiley & Sons
Release Date: 2015-01-27
The simulation of electromagnetic transients is a mature field that plays an important role in the design of modern power systems. Since the first steps in this field to date, a significant effort has been dedicated to the development of new techniques and more powerful software tools. Sophisticated models, complex solution techniques and powerful simulation tools have been developed to perform studies that are of supreme importance in the design of modern power systems. The first developments of transients tools were mostly aimed at calculating over-voltages. Presently, these tools are applied to a myriad of studies (e.g. FACTS and Custom Power applications, protective relay performance, simulation of smart grids) for which detailed models and fast solution methods can be of paramount importance. This book provides a basic understanding of the main aspects to be considered when performing electromagnetic transients studies, detailing the main applications of present electromagnetic transients (EMT) tools, and discusses new developments for enhanced simulation capability. Key features: Provides up-to-date information on solution techniques and software capabilities for simulation of electromagnetic transients. Covers key aspects that can expand the capabilities of a transient software tool (e.g. interfacing techniques) or speed up transients simulation (e.g. dynamic model averaging). Applies EMT-type tools to a wide spectrum of studies that range from fast electromagnetic transients to slow electromechanical transients, including power electronic applications, distributed energy resources and protection systems. Illustrates the application of EMT tools to the analysis and simulation of smart grids.
Power System Transients

In this textbook, a variety of transient cases that have occurred or are possible to occur in power systems are discussed and analyzed. It starts by categorizing transients’ phenomena and specifying unfavorable situations in power systems raised by transients. It then moves on to different protective measures that have been implemented in the system to prevent disasters caused by those transients. It also explains different methodologies used to analyze transients in power systems. This book discusses the modeling of components very extensively and provides analysis cases to assess a wide variety of transients, their possible effects on the system, and the types of protection commonly used for each case, along with methods fordesigning a sound protection system. FEATURES • Detailed models of system components along with power systems computer- aided design (PSCAD) implementation and analysis • Comprehensive reference of transient cases in power systems along with design considerations and protective solutions • The cases are not limited to classical transients such as lightning strikes and switching, but rather the book discusses transient cases that power system operators and engineers have to deal with, such as ferroresonance, in detail, accompanied by computer simulations • A chapter on original materials related to transformer windings with induced traveling waves Power System Transients: Modelling Simulation and Applications provides a comprehensive resource to mainly educate graduate students in the area of power system transients. It also serves as a reference for industry engineers challenged by transient problems in the system. .