Transformers For Natural Language Processing


Download Transformers For Natural Language Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Transformers For Natural Language Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Transformers for Natural Language Processing


Transformers for Natural Language Processing

Author: Denis Rothman

language: en

Publisher: Packt Publishing Ltd

Release Date: 2021-01-29


DOWNLOAD





Publisher's Note: A new edition of this book is out now that includes working with GPT-3 and comparing the results with other models. It includes even more use cases, such as casual language analysis and computer vision tasks, as well as an introduction to OpenAI's Codex. Key FeaturesBuild and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning modelsGo through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machineTest transformer models on advanced use casesBook Description The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What you will learnUse the latest pretrained transformer modelsGrasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer modelsCreate language understanding Python programs using concepts that outperform classical deep learning modelsUse a variety of NLP platforms, including Hugging Face, Trax, and AllenNLPApply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and moreMeasure the productivity of key transformers to define their scope, potential, and limits in productionWho this book is for Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data.

Natural Language Processing with Transformers, Revised Edition


Natural Language Processing with Transformers, Revised Edition

Author: Lewis Tunstall

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2022-05-26


DOWNLOAD





Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments

Transformers for Natural Language Processing


Transformers for Natural Language Processing

Author: Denis Rothman

language: en

Publisher: Packt Publishing Ltd

Release Date: 2022-03-25


DOWNLOAD





OpenAI's GPT-3, ChatGPT, GPT-4 and Hugging Face transformers for language tasks in one book. Get a taste of the future of transformers, including computer vision tasks and code writing and assistance. Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Improve your productivity with OpenAI’s ChatGPT and GPT-4 from prompt engineering to creating and analyzing machine learning models Pretrain a BERT-based model from scratch using Hugging Face Fine-tune powerful transformer models, including OpenAI's GPT-3, to learn the logic of your data Book DescriptionTransformers are...well...transforming the world of AI. There are many platforms and models out there, but which ones best suit your needs? Transformers for Natural Language Processing, 2nd Edition, guides you through the world of transformers, highlighting the strengths of different models and platforms, while teaching you the problem-solving skills you need to tackle model weaknesses. You'll use Hugging Face to pretrain a RoBERTa model from scratch, from building the dataset to defining the data collator to training the model. If you're looking to fine-tune a pretrained model, including GPT-3, then Transformers for Natural Language Processing, 2nd Edition, shows you how with step-by-step guides. The book investigates machine translations, speech-to-text, text-to-speech, question-answering, and many more NLP tasks. It provides techniques to solve hard language problems and may even help with fake news anxiety (read chapter 13 for more details). You'll see how cutting-edge platforms, such as OpenAI, have taken transformers beyond language into computer vision tasks and code creation using DALL-E 2, ChatGPT, and GPT-4. By the end of this book, you'll know how transformers work and how to implement them and resolve issues like an AI detective.What you will learn Discover new techniques to investigate complex language problems Compare and contrast the results of GPT-3 against T5, GPT-2, and BERT-based transformers Carry out sentiment analysis, text summarization, casual speech analysis, machine translations, and more using TensorFlow, PyTorch, and GPT-3 Find out how ViT and CLIP label images (including blurry ones!) and create images from a sentence using DALL-E Learn the mechanics of advanced prompt engineering for ChatGPT and GPT-4 Who this book is for If you want to learn about and apply transformers to your natural language (and image) data, this book is for you. You'll need a good understanding of Python and deep learning and a basic understanding of NLP to benefit most from this book. Many platforms covered in this book provide interactive user interfaces, which allow readers with a general interest in NLP and AI to follow several chapters. And don't worry if you get stuck or have questions; this book gives you direct access to our AI/ML community to help guide you on your transformers journey!