Topology Ergodic Theory Real Algebraic Geometry

Download Topology Ergodic Theory Real Algebraic Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Topology Ergodic Theory Real Algebraic Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Topology, Ergodic Theory, Real Algebraic Geometry

Author: Vladimir G. Turaev
language: en
Publisher: American Mathematical Soc.
Release Date: 2001
This volume is dedicated to the memory of the Russian mathematician, V.A. Rokhlin (1919-1984). It is a collection of research papers written by his former students and followers, who are now experts in their fields. The topics in this volume include topology (the Morse-Novikov theory, spin bordisms in dimension 6, and skein modules of links), real algebraic geometry (real algebraic curves, plane algebraic surfaces, algebraic links, and complex orientations), dynamics (ergodicity, amenability, and random bundle transformations), geometry of Riemannian manifolds, theory of Teichmuller spaces, measure theory, etc. The book also includes a biography of Rokhlin by Vershik and two articles which should prove of historical interest.
Real Algebraic Varieties

This book gives a systematic presentation of real algebraic varieties. Real algebraic varieties are ubiquitous.They are the first objects encountered when learning of coordinates, then equations, but the systematic study of these objects, however elementary they may be, is formidable. This book is intended for two kinds of audiences: it accompanies the reader, familiar with algebra and geometry at the masters level, in learning the basics of this rich theory, as much as it brings to the most advanced reader many fundamental results often missing from the available literature, the “folklore”. In particular, the introduction of topological methods of the theory to non-specialists is one of the original features of the book. The first three chapters introduce the basis and classical methods of real and complex algebraic geometry. The last three chapters each focus on one more specific aspect of real algebraic varieties. A panorama of classical knowledge is presented, as well as major developments of the last twenty years in the topology and geometry of varieties of dimension two and three, without forgetting curves, the central subject of Hilbert's famous sixteenth problem. Various levels of exercises are given, and the solutions of many of them are provided at the end of each chapter.